Титан (элемент)

Материал из Википедии — свободной энциклопедии
Титан
← Скандий | Ванадий →
22 Ti

Zr
Периодическая система элементовВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
Периодическая система элементов
22Ti
Внешний вид простого вещества
Стержень, состоящий из титановых кристаллов высокой чистоты
Свойства атома
Название, символ, номер Тита́н / Titanium (Ti), 22
период
, блок
14 (устар. 4), 4,
d-элемент
Атомная масса
(молярная масса)
47,867(1)[1] а. е. м. (г/моль)
Электронная конфигурация [Ar] 3d24s2
1s22s22p63s23p63d24s2
Радиус атома 147 пм
Химические свойства
Ковалентный радиус 132 пм
Радиус иона (+4e)68 (+2e)94 пм
Электроотрицательность 1,54 (шкала Полинга)
Электродный потенциал −1,63
Степени окисления +2, +3, +4
Энергия ионизации
(первый электрон)
657,8 (6,8281[2]кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 4,54 г/см³
Температура плавления 1670 °C
1943 K
Температура кипения 3286,85 С
3560 K
Мол. теплота плавления 18,8 кДж/моль
Мол. теплота испарения 422,6 кДж/моль
Молярная теплоёмкость 25,1[3] Дж/(K·моль)
Молярный объём 10,6 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
плотноупакованная (α-Ti)
Параметры решётки
a=2,951 с=4,697 (α-Ti)
Отношение c/a 1,587
Температура Дебая 380 K
Прочие характеристики
Теплопроводность (300 K) 21,9 Вт/(м·К)
Номер CAS 7440-32-6
22
Титан
47,867
3d24s2

Тита́н (

атомным номером 22. Относится к переходным металлам
.

металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью
в растворах щелочей и большинства кислот.

История

Открытие

Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз
— идентичные оксиды титана.

Первый образец металлического титана получил в

иодида титана(IV)
TiI4.

Титан не находил промышленного применения, пока

) до настоящего времени остаётся одним из основных в промышленном получении титана.

Происхождение названия

Металл получил своё название в честь

Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном
.

Нахождение в природе

Титан находится на 9-м месте по распространённости в природе. Содержание в

руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые[3]
.

Месторождения

Крупные коренные месторождения титана находятся на территории

США, Китая, Норвегии, Швеции, Египта, Австралии, Индии, Южной Кореи, Казахстана, Туркменистана; россыпные месторождения имеются в Бразилии, Индии, США, Сьерра-Леоне, Австралии[3][5]. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %)[6]
. Крупнейшее месторождение в России расположено в республике Коми — Пижемское.

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т, а рутиловых — 49,7—52,7 млн т[7]. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 млрд т руды со средним содержанием диоксида титана около 10 %[8].

Крупнейший в мире производитель титана — российская компания «ВСМПО-Ависма».

Физические свойства

Титан — лёгкий серебристо-белый

пространственная группа Im3m, параметры ячейки a = 0,3269 нм, Z = 2), температура перехода α↔β 883 °C, теплота перехода ΔH = 3,8 кДж/моль[3] (87,4 кДж/кг[9]). Большинство металлов при растворении в титане стабилизируют β-фазу и снижают температуру перехода α↔β[3]. При давлении выше 9 ГПа и температуре выше 900 °C титан переходит в гексагональную фазу (ω-Ti)[9]. Плотность α-Ti и β-Ti соответственно равна 4,505 г/см³ (при 20 °C) и 4,32 г/см³ (при 900 °C)[3]. Атомная плотность α-титана 5,67⋅1022 ат/см³[10][11]
.

Температура плавления титана при нормальном давлении равна 1670 ± 2 °C, или 1943 ± 2 К (принята в качестве одной из вторичных калибровочных точек температурной шкалы

энтальпия образования ΔH0
f
= 473,0 кДж/моль, энергия Гиббса ΔG0
f
= 428,4 кДж/моль, молярная энтропия S0 = 180,3 кДж/(моль·К), теплоёмкость при постоянном давлении Cp = 24,4 кДж/(моль·K)[2]

.

Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки

.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Температура перехода в сверхпроводящее состояние 0,387 К. При температурах выше 73 К титан парамагнитен. Магнитная восприимчивость при 20 °C составляет 3,2·10−6[3]. Постоянная Холла α-титана равна +1,82·10−13[3].

Изотопы

Известны

изотопы титана с массовыми числами от 38 до 63 (количество протонов 22, нейтронов от 16 до 41), и 2 ядерных изомера
.

Природный титан состоит из смеси пяти стабильных изотопов со следующей

изотопной распространенностью
: 46Ti (7,95 %), 47Ti (7,75 %), 48Ti (73,45 %), 49Ti (5,51 %), 50Ti (5,34 %).

Среди искусственных изотопов самые долгоживущие 44Ti (период полураспада 60 лет) и 45Ti (период полураспада 184 минуты).

Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[3]. Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасна.

Титан устойчив к разбавленным растворам многих

щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора[2]
.

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−. Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная плёнка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах[12].

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

При нагревании Ti взаимодействует с

.

Восстановлением TiCl4

дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2
.

С азотом N2 выше 400 °C титан образует нитрид TiNx (x = 0,58—1,00). Титан — один из немногих элементов, которые горят в атмосфере азота[2].

При взаимодействии титана с углеродом образуется карбид титана TiCx (x = 0,49—1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHx (x = 2,00—2,98). При нагревании эти гидриды разлагаются с выделением H2[13].

Титан образует

интерметаллические соединения
со многими металлами.

Получение

ван Аркеля и де Бура
.

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов.

Для получения титанового шлака ильменитовый концентрат восстанавливают в

уголь-антрацит), при этом железо отделяется в металлическую фазу (чугун
), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с

тетрахлорида титана
TiCl4:

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например,

диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора
.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Применение

В чистом виде и в виде сплавов

Часы из титанового сплава
Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985

Использование металлического титана во многих отраслях промышленности обусловлено тем, что его прочность примерно равна прочности стали при том, что он на 45 % легче. Титан на 60 % тяжелее алюминия, но прочность его примерно вдвое больше[2].

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении[14][a].
  • Металл применяется в химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титан является физиологически инертным[2], благодаря чему применяется в медицине (протезы, остеопротезы, зубные имплантаты), в стоматологических и эндодонтических инструментах, украшениях для пирсинга.
  • Титановое литьё выполняют в
    памятник Юрию Гагарину на площади его имени в Москве[17]
    .
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов, например, рельсы и оси вагонных колес могут делаться из сплавов: К76Т, М76Т, Э76Т.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие.

Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6), содержащий около 6 % алюминия и около 4 % ванадия. По соотношению кристаллических фаз он классифицируется как (α+β)-сплав. На его производство приходится до 50 % производимого титана[3].

Ферротитан (сплав титана с железом, содержащий 18—25 % титана) используют в чёрной металлургии для раскисления стали и удаления растворённых в ней нежелательных примесей (сера, азот, кислород)[3].

В 1980-х годах около 60—65 % производимого в мире титана использовалось в строительстве летательных аппаратов и ракет, 15 % — в химическом машиностроении, 10 % — в энергетике, 8 % — в строительстве судов и для опреснителей воды[3].

В виде соединений

Анализ рынков потребления

В 2005 году компания «Titanium Corporation» опубликовала следующую оценку потребления титана в мире:

  • 60 % — краска;
  • 20 % — пластик;
  • 13 % — бумага;
  • 7 % — машиностроение.

Цены

Цена титана на 2015 год составляла 5,9—6,0 $ за килограмм, в зависимости от чистоты[18].

Чистота и марка чернового титана (титановой губки) обычно определяется по его твёрдости, которая зависит от содержания примесей.

Физиологическое действие

Титан считается физиологически инертным, благодаря чему применяется в

канцерогенной[2]. Как было сказано выше, титан применяется также в стоматологии. Отличительная черта применения титана заключается не только в прочности, но и способности самого металла сращиваться с костью
, что даёт возможность обеспечить квазимонолитность основы зуба.

Примечания

Комментарии
  1. В годы холодной войны СССР располагал значительными запасами титана. США закупали титан в СССР через третьи страны. В частности, из советского титана строился сверхзвуковой самолет-разведчик Lockheed SR-71 Blackbird[15][16]
Источники
  1. .
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — 2828 p. — ISBN 1420090844.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Раков И. Э. Титан // Химическая энциклопедия : в 5 т. / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные — Трипсин. — С. 590—592. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
  4. Riley J.P., Skirrow G. Chemical Oceanography V. 1, 1965.
  5. Месторождение титана Архивная копия от 28 марта 2015 на Wayback Machine.
  6. Месторождение титана Архивная копия от 21 февраля 2015 на Wayback Machine.
  7. Ильменит, рутил, титаномагнетит — 2006 г. Дата обращения: 17 ноября 2007. Архивировано из оригинала 28 декабря 2007 года.
  8. Титан. Информационно-аналитический центр «Минерал». Дата обращения: 19 ноября 2010. Архивировано 7 октября 2011 года.
  9. 1 2 3 4 5 6 7 8 9 10 Бердоносов С. С. Титан // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 116. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  10. Стрельченко С. С., Лебедев В. В. Соединения A3B5: Справочник. — М.: Металлургия, 1984. 144 с.
  11. Свойства элементов: В 2 ч. Ч. 1. Физические свойства: Справочник. Под ред. Г. В. Самсонова. — М.: Металлургия, 1976. 600 с.
  12. Влияние воды на процесс пассивации титана. www.chemfive.ru. Дата обращения: 21 октября 2015. Архивировано из оригинала 14 августа 2016 года.
  13. Современное состояние аналитической химии титана / Б. Н. Мелентьев, А. И. Пономарёв. — Москва : [б. и.], 1959. — 27 с.; 20 см. — (Рефераты докладов на Совещании по редким и полупроводниковым элементам).
  14. Большина Е. П. Высокие технологии в металлургии. Производство цветных металлов. — Новотроицк: НФ МИСиС, 2008. — С. 67. — 68 с. — ISBN 73.
  15. Facts You Didn’t Know About the SR-71 Blackbird (англ.). ILTWMT (5 августа 2011). Дата обращения: 24 февраля 2019. Архивировано 12 декабря 2018 года.
  16. BBC (2 июля 2013). Дата обращения: 24 февраля 2019. Архивировано
    25 декабря 2018 года.
  17. Искусство литья в XX веке. Дата обращения: 18 ноября 2010. Архивировано 5 мая 2012 года.
  18. На мировом рынке титана за последние два месяца цены стабилизировались (обзор). Дата обращения: 2 мая 2015. Архивировано 11 сентября 2015 года.

Ссылки