Agricultural technology

Source: Wikipedia, the free encyclopedia.

Agricultural technology or agrotechnology (abbreviated agtech, agritech, AgriTech, or agrotech) is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. Agricultural technology can be products, services or applications derived from agriculture that improve various input/output processes.[1][2]

Advances in agricultural science, agronomy, and agricultural engineering have led to applied developments in agricultural technology.[3][4]

History

The history of agriculture has been shaped by technological advances. Agricultural technology dates back thousands of years. Historians have described a number of agricultural revolutions, which identify major shifts in agricultural practice and productivity. These revolutions have been closely connected to technological improvements.

Around 10,000 years ago, the

Khuzistan in the south-west of present-day Iran.[5][6] The ancient Egyptian use of the Nile River's flooding
, marked another significant advancement.

The

De Re Rustica
," serving as invaluable records of contemporary farming techniques.

The

heavy plow
, driven by draft animals, facilitated the cultivation of previously uncultivated lands.

A major turning point for agricultural technology is the Industrial Revolution, which introduced agricultural machinery to mechanise the labour of agriculture, greatly increasing farm worker productivity. Revolutionary inventions like the seed drill, mechanical reaper, and steam-powered tractors reshaped the farming landscape. This period also witnessed the establishment of agricultural societies and colleges dedicated to advancing farming methodologies. In modern mechanised agriculture powered machinery has replaced many farm jobs formerly carried out by manual labour or by working animals such as oxen, horses and mules.

Advances in the 19th century included the development of modern

Haber–Bosch process
for extracting nitrogen from the atmosphere.

The 20th century saw major advances in agricultural technologies, including the development of synthetic fertilizers and pesticides, and new agricultural machinery including mass produced tractors and agricultural aircraft for aerial application of pesticides. More recent advances have included agricultural plastics, genetically modified crops, improved drip irrigation, integrated pest management, and soilless farming techniques such as hydroponics, aquaponics, and aeroponics.

In the first decades of the 21st century, Information Age technologies have been increasingly applied to agriculture. Agricultural robots, agricultural drones and driverless tractors have found regular use on farms, while digital agriculture and precision agriculture make use of extensive data collection and computation to improve farm efficiency.[7] Precision agriculture includes such areas as precision beekeeping, precision livestock farming, and precision viticulture.

Modern Agricultural Technology Tools

Climate Monitoring

Nutrition Management

Filiz Agricultural Sensor Station Product Photo
Filiz Agricultural Sensor Station

Irrigation Management

Pest and Disease Management

Crop Inspection

Farm Management

  • Farm Management System

Hydroponics

Hydroponics is a method of cultivating plants without soil. Instead, it relies on a nutrient-rich water solution to deliver essential minerals and nutrients directly to the plant roots. This approach allows for precise control over growing conditions and can lead to increased crop yields and faster growth rates.

Vertical Farming

Vertical farming is a contemporary agricultural technique that cultivates crops in vertically stacked layers or inclined surfaces within controlled indoor settings. This innovative approach leverages technology and controlled environments to enhance crop growth.[8]

Agricultural Drones

Agricultural drones, also known as "ag drones," are specialized unmanned aerial vehicles (UAVs) or remotely piloted aircraft systems (RPAS) tailored for agricultural applications. These drones are outfitted with an array of sensors, cameras, and advanced technology to aid in agricultural and land management tasks. Their purposes encompass crop monitoring, efficient irrigation management, early pest and disease detection, precise crop spraying, and detailed crop mapping, among others.

Agro-textiles

Agro-textiles is the segmented class of

crop protection and in crop development for instance shade nets, thermal insulation and sunscreen materials, windshield, antibird nets, which provide minimal shading and proper temperature, air circulation for protecting plants from direct sunlight and birds. Agrotextiles involves mulch mats, hail protection nets, and crop covers, etc. Agro-textiles are useful in horticulture, aquaculture, landscape gardening and forestry also. More examples of use and application are covering livestock protection, suppressing weed and insect control, etc.[9]

More technologies and applications

See also

References

  1. ^ "Agriculture Technology | National Institute of Food and Agriculture". nifa.usda.gov. Retrieved 2020-12-23.
  2. ^ "Agricultural technology". Encyclopedia Britannica. Retrieved 2020-12-23.
  3. ^ "Agricultural Technology Center > Agricultural Technology Center". english.busan.go.kr. Retrieved 2020-12-23.
  4. ^ "The evolution of agricultural technology". Innovation News Network. 2020-07-08. Retrieved 2020-12-23.
  5. ^ . Retrieved 2019-01-12.
  6. ^ Lawton, H. W.; Wilke, P. J. (1979). "Ancient Agricultural Systems in Dry Regions of the Old World". In Hall, A. E.; Cannell, G. H.; Lawton, H.W. (eds.). Agriculture in Semi-Arid Environments. Ecological Studies. Vol. 34 (reprint ed.). Berlin: Springer Science & Business Media (published 2012). p. 13. . Retrieved 2019-01-12.
  7. ^ "Agricultural Technology - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2020-12-23.
  8. ^ Birkby, Jeff (January 2016). "Vertical Farming". ATTRA Sustainable Agriculture Program. Retrieved 6 February 2022.
  9. .