Apolipoprotein AI

Source: Wikipedia, the free encyclopedia.

APOA1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_000039
NM_001318017
NM_001318018
NM_001318021

NM_009692

RefSeq (protein)

NP_033822

Location (UCSC)Chr 11: 116.84 – 116.84 MbChr 9: 46.14 – 46.14 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Apolipoprotein AI (Apo-AI) is a protein that in humans is encoded by the APOA1 gene.[5][6] As the major component of HDL particles, it has a specific role in lipid metabolism.

Structure

APOA1 is located on chromosome 11, with its specific location being 11q23-q24. The gene contains 4 exons.[7] The encoded apolipoprotein AI, is a 28.1 kDa protein composed of 243 amino acids; 21 peptides have been observed through mass spectrometry data.[8][9] Due to alternative splicing, there exists multiple transcript variants of APOA1, including at least one which encodes a Apo-AI preprotein.[7]

Function

Apolipoprotein AI is the major protein component of

high density lipoprotein (HDL) particles in plasma.[10]

Chylomicrons secreted from the intestinal enterocyte also contain Apo-AI, but it is quickly transferred to HDL in the bloodstream.[11]

The protein, as a component of HDL particles, enables efflux of fat molecules by accepting fats from within cells (including macrophages within the walls of arteries which have become overloaded with ingested fats from oxidized LDL particles) for transport (in the water outside cells) elsewhere, including back to LDL particles or to the liver for excretion.

It is a cofactor for

cholesteryl esters. Apolipoprotein AI has also been isolated as a prostacyclin (PGI2) stabilizing factor, and thus may have an anticlotting effect.[12] Defects in the gene encoding it are associated with HDL deficiencies, including Tangier disease, and with systemic non-neuropathic amyloidosis.[7]

Apo-AI is often used as a biomarker for prediction of cardiovascular diseases. The ratio apoB-100/apoA-I (i.e. LDL & larger particles vs. HDL particles), NMR measured lipoprotein (

low density lipoprotein (LDL)/(HDL) particle ratios even more so, has always had a stronger correlation with myocardial infarction event rates than older methods of measuring lipid transport in the water outside cells.[13]

Apo-AI is routinely measured using immunoassays such as

nephelometry
.

Applications

Apo-AI can be used to create in vitro lipoprotein nanodiscs for cell-free membrane expression systems.[14]

Clinical significance

Activity associated with high HDL-C and protection from heart disease

As a major component of the high-density lipoprotein complex (protective "fat removal" particles), Apo-AI helps to clear fats, including cholesterol, from white blood cells within artery walls, making the white blood cells (WBCs) less likely to become fat overloaded, transform into foam cells, die and contribute to progressive atheroma. Five of nine men found to carry a mutation (E164X) who were at least 35 years of age had developed premature coronary artery disease.[15] One of four mutants of Apo-AI is present in roughly 0.3% of the Japanese population, but is found in 6% of those with low HDL cholesterol levels.[16]

heterodimer with Apo-AII. However, the enhanced cardioprotective activity of this mutant (which likely depends on fat & cholesterol efflux) cannot easily be replicated by other cysteine mutants.[19]

Recombinant Apo-AI Milano dimers formulated into liposomes can reduce atheromas in animal models by up to 30%.[20] Apo-AI Milano has also been shown in small clinical trials to have a statistically significant effect in reducing (reversing) plaque build-up on arterial walls.[21][22]

In human trials the reversal of plaque build-up was measured over the course of five weeks.[21][23]

Novel haplotypes within apolipoprotein AI-CIII-AIV gene cluster

A study from 2008 describes two novel susceptibility haplotypes, P2-S2-X1 and P1-S2-X1, discovered in ApoAI-CIII-AIV gene cluster on chromosome 11q23, which confer approximately threefold higher risk of coronary heart disease in normal[24] as well as in the patients having type 2 diabetes mellitus.[25]

Role in other diseases

A G/A

alpha-tocopherol.[27]
chondrocytes (cartilage cells).[28] A wide variety of amyloidosis
symptoms are associated with rare APOA1 mutants.

Apo-AI binds to

endotoxin, and has a major role in the anti-endotoxin function of HDL.[29]

In one study, a decrease in Apo-AI levels was detected in schizophrenia patients' CSF, brain and peripheral tissues.[30]

Epistatic impact of Apo-AI

Apolipoprotein AI and ApoE interact epistatically to modulate triglyceride levels in coronary heart disease patients. Individually, neither Apo-AI nor ApoE was found to be associated with triglyceride (TG) levels, but pairwise epistasis (additive x additive model) explored their significant synergistic contributions with raised TG levels (P<0.01). [31]

Factors affecting Apo-AI activity

In a study from 2005 it was reported, that Apo-AI production is decreased by calcitriol. It was concluded, that this regulation happens on transcription level: calcitriol alters yet unknown coactivators or corepressors, resulting in repression of APOA1 promoter activity. Simultaneously, Apo-AI production was increased by vitamin D antagonist, ZK-191784.[32]

Exercise or statin treatment may cause an increase in HDL-C levels by inducing Apo-AI production, but this depends on the G/A promoter polymorphism.[33]

Interactions

Apolipoprotein A1 has been shown to

interact
with:

Potential binding partners

Apolipoprotein AI binding precursor, a relative of APOA-1 abbreviated APOA1BP, has a predicted biochemical interaction with carbohydrate kinase domain containing protein. The relationship between these two proteins is substantiated by cooccurance across genomes and coexpression.[37] The ortholog of CARKD in E. coli contains a domain not present in any eukaryotic ortholog. This domain has a high sequence identity to APOA1BP. CARKD is a protein of unknown function, and the biochemical basis for this interaction is unknown.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
Statin_Pathway_WP430go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
Statin_Pathway_WP430go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Statin pathway edit]]
Statin pathway edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430".

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000118137Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000032083Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 6294659
    .
  6. .
  7. ^ a b c "Entrez Gene: APOA1 apolipoprotein A1".
  8. PMID 23965338
    .
  9. ^ "Apolipoprotein A-IV". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 5 March 2016. Retrieved 25 March 2015.
  10. S2CID 213180689
    .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. ^ "The Long Saga of Apo-A1 Milano | in the Pipeline". 16 November 2016.
  18. PMID 6785551
    .
  19. .
  20. .
  21. ^ a b "Apo A-I-Milano Trial: Where are we now?". Cleveland Clinic. Retrieved 26 July 2008.
  22. PMID 14600188
    .
  23. ^ "Apo A-I Milano". Cedars-Sinai Heart Institute. Archived from the original on 21 December 2007. Retrieved 26 July 2008.
  24. PMID 17825930
    .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. ^ "STRING: Known and Predicted Protein-Protein Interactions". Archived from the original on 18 July 2011.

External links