Chelation

Source: Wikipedia, the free encyclopedia.
(Redirected from
Chelates
)

Chelation is a type of bonding of

coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom.[1][2] These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds
, but this is not a necessity.

The word chelation is derived from

Chelation is useful in applications such as providing nutritional supplements, in

homogeneous catalysts, in chemical water treatment to assist in the removal of metals, and in fertilizers
.

Chelate effect

Ethylenediamine ligand chelating to a metal with two bonds
Cu2+ complexes with nonchelating methylamine (left) and chelating ethylenediamine (right) ligands

The chelate effect is the greater affinity of chelating ligands for a metal ion than that of similar nonchelating (monodentate) ligands for the same metal.

The thermodynamic principles underpinning the chelate effect are illustrated by the contrasting affinities of copper(II) for ethylenediamine (en) vs. methylamine.

Cu2+ + en ⇌ [Cu(en)]2+

(1)
Cu2+ + 2 MeNH2 ⇌ [Cu(MeNH2)2]2+

(2)

In (1) the ethylenediamine forms a chelate complex with the copper ion. Chelation results in the formation of a five-membered CuC2N2 ring. In (2) the bidentate ligand is replaced by two monodentate methylamine ligands of approximately the same donor power, indicating that the Cu–N bonds are approximately the same in the two reactions.

The thermodynamic approach to describing the chelate effect considers the equilibrium constant for the reaction: the larger the equilibrium constant, the higher the concentration of the complex.

[Cu(en)] = β11[Cu][en]

(3)
[Cu(MeNH2)2] = β12[Cu][MeNH2]2

(4)

Electrical charges have been omitted for simplicity of notation. The square brackets indicate concentration, and the subscripts to the

analytical concentration
of methylamine is twice that of ethylenediamine and the concentration of copper is the same in both reactions, the concentration [Cu(en)] is much higher than the concentration [Cu(MeNH2)2] because β11 ≫ β12.

An equilibrium constant, K, is related to the standard

Gibbs free energy
, by

where R is the gas constant and T is the temperature in kelvins. is the standard enthalpy change of the reaction and is the standard entropy change.

Since the enthalpy should be approximately the same for the two reactions, the difference between the two stability constants is due to the effects of entropy. In equation (1) there are two particles on the left and one on the right, whereas in equation (2) there are three particles on the left and one on the right. This difference means that less entropy of disorder is lost when the chelate complex is formed with bidentate ligand than when the complex with monodentate ligands is formed. This is one of the factors contributing to the entropy difference. Other factors include solvation changes and ring formation. Some experimental data to illustrate the effect are shown in the following table.[4]

Equilibrium log β
Cu2+ + 2 MeNH2 ⇌ Cu(MeNH2)22+ 6.55 −37.4 −57.3 19.9
Cu2+ + en ⇌ Cu(en)2+ 10.62 −60.67 −56.48 −4.19

These data confirm that the enthalpy changes are approximately equal for the two reactions and that the main reason for the greater stability of the chelate complex is the entropy term, which is much less unfavorable. In general it is difficult to account precisely for thermodynamic values in terms of changes in solution at the molecular level, but it is clear that the chelate effect is predominantly an effect of entropy.

Other explanations, including that of Schwarzenbach,[5] are discussed in Greenwood and Earnshaw (loc.cit).

In nature

Numerous

malate, and polypeptides such as phytochelatin are also typical chelators. In addition to these adventitious chelators, several biomolecules are specifically produced to bind certain metals (see next section).[6][7][8][9]

Virtually all metalloenzymes feature metals that are chelated, usually to peptides or cofactors and prosthetic groups.

siderophores. For example, species of Pseudomonas are known to secrete pyochelin and pyoverdine that bind iron. Enterobactin, produced by E. coli, is the strongest chelating agent known. The marine mussels use metal chelation esp. Fe3+ chelation with the Dopa residues in mussel foot protein-1 to improve the strength of the threads that they use to secure themselves to surfaces.[10][11][12]

In earth science, chemical

plants and microorganisms. Selective chelation of heavy metals is relevant to bioremediation (e.g., removal of 137Cs from radioactive waste).[14]

Applications

Animal feed additives

Synthetic chelates such as

Da.[citation needed] Since the early development of these compounds, much more research has been conducted, and has been applied to human nutrition products in a similar manner to the animal nutrition experiments that pioneered the technology. Ferrous bis-glycinate is an example of one of these compounds that has been developed for human nutrition.[16]

Dental use

Dentin adhesives were first designed and produced in the 1950s based on a co-monomer chelate with calcium on the surface of the tooth and generated very weak water-resistant chemical bonding (2–3 MPa).[17]

Chelation therapy

U.S. Food and Drug Administration (FDA) for serious cases of lead poisoning. It is not approved for treating "heavy metal toxicity".[18] Although beneficial in cases of serious lead poisoning, use of disodium EDTA (edetate disodium) instead of calcium disodium EDTA has resulted in fatalities due to hypocalcemia.[19] Disodium EDTA is not approved by the FDA for any use,[18] and all FDA-approved chelation therapy products require a prescription.[20]

Contrast agents

Chelate complexes of

PET imaging.[23] These chelate complexes often employ the usage of hexadentate ligands such as desferrioxamine B (DFO), according to Meijs et al.,[24] and the gadolinium complexes often employ the usage of octadentate ligands such as DTPA, according to Desreux et al.[25] Auranofin, a chelate complex of gold, is used in the treatment of rheumatoid arthritis, and penicillamine, which forms chelate complexes of copper, is used in the treatment of Wilson's disease and cystinuria, as well as refractory rheumatoid arthritis.[26][27]

Nutritional advantages and issues

Chelation in the intestinal tract is a cause of numerous interactions between drugs and metal ions (also known as "

minerals" in nutrition). As examples, antibiotic drugs of the tetracycline and quinolone families are chelators of Fe2+, Ca2+, and Mg2+ ions.[28][29]

EDTA, which binds to calcium, is used to alleviate the

hypercalcemia that often results from band keratopathy. The calcium may then be removed from the cornea, allowing for some increase in clarity of vision for the patient.[citation needed
]

Noyori asymmetric hydrogenation and asymmetric isomerization. The latter has the practical use of manufacture of synthetic (–)-menthol
.

Cleaning and water softening

A chelating agent is the main component of some rust removal formulations.

EDTA. Phosphonates are also well-known chelating agents. Chelators are used in water treatment programs and specifically in steam engineering.[citation needed] Although the treatment is often referred to as "softening," chelation has little effect on the water's mineral content, other than to make it soluble and lower the water's pH
level.

Fertilizers

Metal chelate compounds are common components of fertilizers to provide micronutrients. These micronutrients (manganese, iron, zinc, copper) are required for the health of the plants. Most fertilizers contain phosphate salts that, in the absence of chelating agents, typically convert these metal ions into insoluble solids that are of no nutritional value to the plants.

EDTA is the typical chelating agent that keeps these metal ions in a soluble form.[30]

Economic situation

Because of their wide needs, the overall chelating agents growth was 4 % annually during 2009-2014

methylglycinediacetic acid (MGDA), glutamic diacetic acid (L-GLDA), citrate, gluconic acid, amino acids, plant extracts etc.[32][34]

Reversal

Dechelation (or de-chelation) is a reverse process of the chelation in which the chelating agent is recovered by acidifying solution with a mineral acid to form a precipitate.[35]: 7 

See also

  • EDDS – chemical compound

References

 This article incorporates text by Kaana Asemave available under the CC BY 4.0 license.

  1. ^ IUPAC definition of chelation.
  2. ^ Latin chela, from Greek, denotes a claw.
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. ^ ]
  10. .
  11. .
  12. .
  13. ^ Pidwirny M. "Introduction to the Lithosphere: Weathering". University of British Columbia Okanagan.
  14. ]
  15. ^ Ashmead HD (1993). The Roles of Amino Acid Chelates in Animal Nutrition. Westwood: Noyes Publications.[page needed]
  16. ^ "Albion Ferrochel Website". Albion Laboratories, Inc. Archived from the original on September 3, 2011. Retrieved July 12, 2011.
  17. OCLC 785080357
    .
  18. ^ a b "FDA Issues Chelation Therapy Warning". September 26, 2008. Retrieved May 14, 2016.
  19. PMID 16511441
    .
  20. FDA
    . February 2, 2016. Retrieved May 14, 2016.
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. ^ a b c (2013) IHS Chemical, Chemical Insight and Forecasting: Chelating Agents.
  32. ^ a b c Dixon NJ (2012) Greener chelating agents, In Handbook of green chemistry: Designing safer chemicals. Wiley 9: 281-307.
  33. ^ Kołodyńska D (2011) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In Expanding Issues in Desalination pp. 339-370.
  34. ^ Kolodynska D (2013) Application of a new generation of complexing agents inremoval of heavy metal ions from different wastes. Env Sci Pollut Res 20: 5939-5949.
  35. ISSN 2083-358X
    .

External links

  • The dictionary definition of chelate at Wiktionary