Factory

A factory, manufacturing plant or production plant is an
Factories arose with the introduction of machinery during the Industrial Revolution, when the capital and space requirements became too great for cottage industry or workshops. Early factories that contained small amounts of machinery, such as one or two spinning mules, and fewer than a dozen workers have been called "glorified workshops".[1]
Most modern factories have large warehouses or warehouse-like facilities that contain heavy equipment used for assembly line production. Large factories tend to be located with access to multiple modes of transportation, some having rail, highway and water loading and unloading facilities.[2] In some countries like Australia, it is common to call a factory building a "Shed".[3]
Factories may either make discrete
Discrete products may be final goods, or parts and sub-assemblies which are made into final products elsewhere. Factories may be supplied parts from elsewhere or make them from raw materials. Continuous production industries typically use heat or electricity to transform streams of raw materials into finished products.
The term mill originally referred to the milling of grain, which usually used natural resources such as water or wind power until those were displaced by steam power in the 19th century. Because many processes like spinning and weaving, iron rolling, and paper manufacturing were originally powered by water, the term survives as in steel mill, paper mill, etc.

History


Max Weber considered production during ancient and medieval times as never warranting classification as factories, with methods of production and the contemporary economic situation incomparable to modern or even pre-modern developments of industry. In ancient times, the earliest production limited to the household, developed into a separate endeavor independent to the place of inhabitation with production at that time only beginning to be characteristic of industry, termed as "unfree shop industry", a situation caused especially under the reign of the Egyptian pharaoh, with slave employment and no differentiation of skills within the slave group comparable to modern definitions as division of labour.[4][5][6]
According to translations of Demosthenes and Herodotus, Naucratis was a, or the only, factory in the entirety of ancient Egypt.[7][8][9] A source of 1983 (Hopkins), states the largest factory production in ancient times was of 120 slaves within fourth century BC Athens.[10] An article within the New York Times article dated 13 October 2011 states:
"In African Cave, Signs of an Ancient Paint Factory" – (John Noble Wilford)
... discovered at Blombos Cave, a cave on the south coast of South Africa where 100,000-year-old tools and ingredients were found with which early modern humans mixed an ochre-based paint.[11]
Although The Cambridge Online Dictionary definition of factory states:
a building or set of buildings where large amounts of goods are made using machines[12]
elsewhere:
... the utilization of machines presupposes social cooperation and the division of labour
— von Mises[13]
The first machine is stated by one source to have been traps used to assist with the capturing of animals, corresponding to the machine as a mechanism operating independently or with very little force by interaction from a human, with a capacity for use repeatedly with operation exactly the same on every occasion of functioning.[14] The wheel was invented c. 3000 BC, the spoked wheel c. 2000 BC. The Iron Age began approximately 1200–1000 BC.[15][16] However, other sources define machinery as a means of production.[17]
Archaeology provides a date for the earliest city as 5000 BC as Tell Brak (Ur et al. 2006), therefore a date for cooperation and factors of demand, by an increased community size and population to make something like factory level production a conceivable necessity.[18][19][20]
Archaeologist Bonnet, unearthed the foundations of numerous workshops in the city of Kerma proving that as early as 2000 BC Kerma was a large urban capital.[21]
The
The large population increase in medieval Islamic cities, such as
The Venice Arsenal also provides one of the first examples of a factory in the modern sense of the word. Founded in 1104 in Venice, Republic of Venice, several hundred years before the Industrial Revolution, it mass-produced ships on assembly lines using manufactured parts. The Venice Arsenal apparently produced nearly one ship every day and, at its height, employed 16,000 people.[verification needed][29]
Industrial Revolution

One of the earliest factories was
The factory system began widespread use somewhat later when cotton spinning was mechanized.
Richard Arkwright is the person credited with inventing the prototype of the modern factory. After he patented his water frame in 1769, he established Cromford Mill, in Derbyshire, England, significantly expanding the village of Cromford to accommodate the migrant workers new to the area. The factory system was a new way of organizing workforce made necessary by the development of machines which were too large to house in a worker's cottage. Working hours were as long as they had been for the farmer, that is, from dawn to dusk, six days per week. Overall, this practice essentially reduced skilled and unskilled workers to replaceable commodities. Arkwright's factory was the first successful cotton spinning factory in the world; it showed unequivocally the way ahead for industry and was widely copied.
Between 1770 and 1850 mechanized factories supplanted traditional artisan shops as the predominant form of manufacturing institution, because the larger-scale factories enjoyed a significant technological and supervision advantage over the small artisan shops.[30] The earliest factories (using the factory system) developed in the cotton and wool textiles industry. Later generations of factories included mechanized shoe production and manufacturing of machinery, including machine tools. After this came factories that supplied the railroad industry included rolling mills, foundries and locomotive works, along with agricultural-equipment factories that produced cast-steel plows and reapers. Bicycles were mass-produced beginning in the 1880s.
The Nasmyth, Gaskell and Company's Bridgewater Foundry, which began operation in 1836, was one of the earliest factories to use modern materials handling such as cranes and rail tracks through the buildings for handling heavy items.[31]
Large scale electrification of factories began around 1900 after the development of the AC motor which was able to run at constant speed depending on the number of poles and the current electrical frequency.[32] At first larger motors were added to line shafts, but as soon as small horsepower motors became widely available, factories switched to unit drive. Eliminating line shafts freed factories of layout constraints and allowed factory layout to be more efficient. Electrification enabled sequential automation using relay logic.
Assembly line

In the mid - to late 20th century, industrialized countries introduced next-generation factories with two improvements:
- Advanced statistical methods of quality control, pioneered by the American mathematician William Edwards Deming, whom his home country initially ignored. Quality control turned Japanese factories into world leaders in cost-effectiveness and production quality.
- Industrial robots on the factory floor, introduced in the late 1970s. These computer-controlled welding arms and grippers could perform simple tasks such as attaching a car door quickly and flawlessly 24 hours a day. This too cut costs and improved speed.
Some speculation
Historically significant factories

- Venetian Arsenal
- Cromford Mill
- Lombe's Mill
- Soho Manufactory
- Portsmouth Block Mills
- Slater Mill Historic Site
- Lowell Mills
- Springfield Armory
- Harpers Ferry Armory
- Nasmyth, Gaskell and Company also called the Bridgewater Foundry
- Baldwin Locomotive Works
- Highland Park Ford Plant
- Ford River Rouge Complex
- Hawthorne Works
- Stalingrad Tractor Plant
- Triangle Shirtwaist Factory
Siting the factory

Before the advent of
Though factories dominated the Industrial Era, the growth in the service sector eventually began to dethrone them:[verification needed] the focus of labour, in general, shifted to central-city office towers or to semi-rural campus-style establishments, and many factories stood deserted in local rust belts.
The next blow to the traditional factories came from
Governing the factory
Much of
Shadow factories
In Britain, a shadow factory is one of a number of manufacturing sites built in dispersed locations in times of war to reduce the risk of disruption due to enemy air-raids and often with the dual purpose of increasing manufacturing capacity. Before World War II Britain had built many shadow factories.
Production of the Supermarine Spitfire at its parent company's base at Woolston, Southampton was vulnerable to enemy attack as a high-profile target and was well within range of Luftwaffe bombers. Indeed, on 26 September 1940 this facility was completely destroyed by an enemy bombing raid. Supermarine had already established a plant at Castle Bromwich; this action prompted them to further disperse Spitfire production around the country with many premises being requisitioned by the British Government.[39]
Connected to the Spitfire was production of its equally important Rolls-Royce Merlin engine, Rolls-Royce's main aero engine facility was located at Derby, the need for increased output was met by building new factories in Crewe and Glasgow and using a purpose-built factory of Ford of Britain in Trafford Park Manchester.[40]
Gallery
-
Zeche Ewald in Herten, exterior (2011)
-
Zeche Ewald in Herten, interior (2011)
-
Coldharbour Mill textile factory, built in 1799.
-
Adolph von Menzel: Moderne Cyklopen
-
New Lanark mill
-
Workers in the fuse factory, Woolwich Arsenal late 1800s
-
The assembly plant of theBell Aircraft Corporation at Wheatfield, New York, United States, 1944
-
Interior of theRougeTool & Die works, 1944
-
Hyundai's Assembly line (about 2005)
-
Danisco Sweeteners factory in Kotka, Finland (2015)
-
First stages of Saturn V rockets being manufactured at the NASA Michoud rocket factory in the 1960s
-
Space station modules being manufactured in theSpace Station Processing Facility
-
A ladle pouring molten steel into aBasic Oxygen Furnace for secondary steelmaking, inside a steel millfactory in Germany
-
Airplanes being manufactured at the Boeing Everett Factory assembly line
See also
Notes
- ISBN 0-521-09418-6.
- ^ Hozdić, Elvis (2015). "Smart Factory for Industry 4.0: A review". International Journal of Modern Manufacturing Technologies. 7 (1): 28–35.
- ^ "What Are Industrial Sheds?". Asset Building. Archived from the original on 10 March 2020.
- ISBN 0415047501
- ISBN 1457117444
- ISBN 0878556907
- ^ Demosthenes, Robert Whiston – Demosthenes, Volume 2 Whittaker and Company, 1868 Retrieved 12 July 2012
- ^ Herodotus, George Rawlinson – History of Herodotus John Murray 1862 Retrieved 12 July 2012
- ^ (secondary) (E.Hughes ed) Oxford Companion to Philosophy – techne
- ISBN 0520048032
- ^ John Noble Wilford (13 October 2011). "In African Cave, Signs of an Ancient Paint Factory". The New York Times. Retrieved 14 October 2011.
- ^ "factory definition, meaning - what is factory in the British English Dictionary & Thesaurus – Cambridge Dictionaries Online". cambridge.org.
- ISBN 1933550198
- ISBN 9048125111
- ISBN 0313327637
- ISBN 0415255880
- ISBN 978-0061310799.
- ISSN 0003-598X.
- ^ Knabb, Kyle Andrew (2008). Understanding the role of production and craft specialization in ancient socio-economic systems: toward the integration of spatial analysis, 3D modeling and virtual reality in archaeology (MA). University of California San Diego.
- ISBN 9780415121828.
- ^ Grzymski, K. (2008). Book review: The Nubian pharaohs: Black kings on the Nile. American Journal of Archaeology, Online Publications: Book Review. Retrieved from "Archived copy" (PDF). Archived from the original (PDF) on 5 November 2014. Retrieved 17 December 2014.
{{cite web}}
: CS1 maint: archived copy as title (link) - ISBN 9789401714167.
- ^ Borschel-Dan, Amanda (16 December 2019). "Factory for Romans' favorite funky fish sauce discovered near Ashkelon". www.timesofisrael.com. Retrieved 18 December 2019.
- ^ ISBN 9781317761570.
- ISBN 0486274721
- ISBN 0262660725
- ^ WM Sumner – Cultural development in the Kur River Basin, Iran: an archaeological analysis of settlement patterns University of Pennsylvania., 1972 [1] Retrieved 12 July 2012
- ISBN 90-04-14649-0
- ISBN 9788120328594.
- S2CID 153641564. Retrieved 2 February 2019.
- ISBN 9780802016379.
- ISBN 0-262-08198-9.
- ^ Bob Casey, John & Horace Dodge (2010). "Henry Ford and Innovation" (PDF). The Henry Ford.
- ^ Dickens, Phill; Kelly, Michael; Williams, John R. (October 2013). "What are the significant trends shaping technology relevant to manufacturing?" (PDF). Government Office for Science UK.
- ^ Fishman, Charles (June 2017). "The Future of Zero-Gravity Living Is Here". Smithsonian Magazine.
- ^ Javier Borda, Hombre y Tecnología: 4.0 y más (Man and Technology: 4.0 and beyond). Sisteplant Publishers, 2018. ISBN 978-84-09-02350-9 (in Spanish)
- ^ "El escéptico de la Industria 4.0: 'Personas frente a robots'". ELMUNDO (in Spanish). 13 October 2014. Retrieved 13 September 2023.
- ^ "The Bournville Story" (PDF). Bournville Village Trust. 2010.
- ^ Price 1986, p. 115.
- ^ Pugh 2000, pp. 192-198.
References
- Needham, Joseph (1986). Science and Civilization in China: Volume 5, Part 1. Taipei: Caves Books, Ltd.
- Thomas, Dublin (1995). "Transforming Women's Work page: New England Lives in the Industrial Revolution 77, 118" Cornell University Press.
- Price, Alfred. The Spitfire Story: Second edition. London: Arms and Armour Press Ltd., 1986. ISBN 0-85368-861-3.
- Pugh, Peter. The Magic of a Name – The Rolls-Royce Story – The First 40 Years. Cambridge, England. Icon Books Ltd, 2000. ISBN 1-84046-151-9
- Thomas, Dublin (1981). "Women at Work: The Transformation of Work and Community in Lowell, Massachusetts, 1826–1860": pp. 86–107, New York: Columbia University Press.
- Biggs, Lindy (1996). The rational factory: architecture, technology, and work in America's age of mass production. Johns Hopkins University Press. ISBN 978-0-8018-5261-9.
Further reading
- Christian, Gallope, D (1987) "Are the classical management functions useful in describing managerial processes?" Academy of Management Review. v 12 n 1, pp. 38–51
- Peterson, T (2004) "Ongoing legacy of R.L. Katz: an updated typology of management skills", Management Decision. v 42 n10, pp. 1297–1308
- Mintzberg, H (1975) "The manager's job: Folklore and fact", Harvard Business Review, v 53 n 4, July – August, pp. 49–61
- Hales, C (1999) "Why do managers do what they do? Reconciling evidence and theory in accounts of managerial processes", British Journal of Management, v 10 n4, pp. 335–50
- Mintzberg, H (1994) "Rounding out the Managers job", Sloan Management Review, v 36 n 1 pp. 11–26.
- Rodrigues, C (2001) "Fayol's 14 principles then and now: A plan for managing today's organizations effectively", Management Decision, v 39 n10, pp. 880–89
- Twomey, D. F. (2006) "Designed emergence as a path to enterprise", Emergence, Complexity & Organization, Vol. 8 Issue 3, pp. 12–23
- McDonald, G (2000) Business ethics: practical proposals for organisations Journal of Business Ethics. v 25(2) pp. 169–85
External links
- Encyclopædia Britannica. Vol. 18 (11th ed.). 1911. .
- Uhl, Karsten (2 May 2016). "Work Spaces: From the Early–Modern Workshop to the Modern Factory". European History Online. Mainz: Leibniz Institute of European History (IEG).