Non-ferrous metal

Source: Wikipedia, the free encyclopedia.

In

ferrite
, and so on) in appreciable amounts.

Generally more costly than

magnetic properties or resistance to corrosion (e.g. zinc).[2] Some non-ferrous materials are also used in the iron and steel industries. For example, bauxite is used as flux for blast furnaces, while others such as wolframite, pyrolusite, and chromite are used in making ferrous alloys.[3]

Important non-ferrous metals include aluminium, copper, lead, tin, titanium, and zinc, and alloys such as brass. Precious metals such as gold, silver, and platinum and exotic or rare metals such as mercury, tungsten, beryllium, bismuth, cerium, cadmium, niobium, indium, gallium, germanium, lithium, selenium, tantalum, tellurium, vanadium, and zirconium are also non-ferrous.[4] They are usually obtained through minerals such as sulfides, carbonates, and silicates.[5] Non-ferrous metals are usually refined through electrolysis.[6]

Recycling and pollution control

Due to their extensive use, non-ferrous

copper cables) scrap.[9]

Ancient history

Non-ferrous metals were the first metals used by humans for metallurgy. Gold, silver and copper existed in their native

cold forging and could be melted in a crucible. Gold, silver and copper replaced some of the functions of other resources, such as wood and stone, owing to their ability to be shaped into various forms for different uses.[10] Due to their rarity, these gold, silver and copper artifacts were treated as luxury items and handled with great care.[11] The use of copper also heralded the transition from the Stone Age to the Copper Age. The Bronze Age, which succeeded the Copper Age, was again heralded by the invention of bronze, an alloy of copper with the non-ferrous metal tin.[10]

Mechanical and structural use

Non-ferrous metals are used in residential, commercial and industrial applications. Material selection for a mechanical or structural application requires some important considerations, including how easily the material can be shaped into a finished part and how its properties can be either intentionally or inadvertently altered in the process. Depending on the end use, metals can be simply cast into the finished part, or cast into an intermediate form, such as an ingot, then worked, or wrought, by rolling, forging, extruding, or other deformation process. Although the same operations are used with ferrous as well as nonferrous metals and alloys, the reaction of nonferrous metals to these forming processes is often more severe. Consequently, properties may differ considerably between the cast and wrought forms of the same metal or alloy.[12]

References

  1. .
  2. ^ "Non-Ferrous Metals". Engineers Handbook. Archived from the original on 4 June 2016. Retrieved 25 October 2011.
  3. .
  4. ^ "Commonly Recycled Metals and Their Sources" (PDF). lOccupational Safety and Health Administration. Retrieved 27 October 2011.
  5. .
  6. ^ "Chapter 82 – Metal Processing and Metal Working Industry". Encyclopaedia of Occupational Health and Safety, 4th Edition. Retrieved 26 October 2011.
  7. ^ "Non-Ferrous Metals". Bureau of International Recycling. Archived from the original on 21 October 2016. Retrieved 26 October 2011.
  8. ^ "Department of the Environment Industry Profile: Waste recycling, treatment and disposal sites" (PDF). Environment Agency. Retrieved 27 October 2011.
  9. .
  10. ^ .
  11. .
  12. ^ "Non-ferrous Metal Applications". All Metals & Forge Group. 16 April 2013. Retrieved 1 October 2013.