Fibrin

Source: Wikipedia, the free encyclopedia.
red blood cells
.
Micrograph showing fibrin (dark pink amorphous material) in a blocked vein surrounded by extravasated red blood cells (right of image). An artery (left of image) and the amnion (far left of image) is also seen. Placenta in a case of fetal thrombotic vasculopathy. H&E stain.

Fibrin (also called Factor Ia) is a fibrous, non-globular protein involved in the clotting of blood. It is formed by the action of the protease thrombin on fibrinogen, which causes it to polymerize. The polymerized fibrin, together with platelets, forms a hemostatic plug or clot over a wound site.

When the lining of a blood vessel is broken, platelets are attracted, forming a platelet plug. These platelets have thrombin receptors on their surfaces that bind serum thrombin molecules,[1] which in turn convert soluble fibrinogen in the serum into fibrin at the wound site. Fibrin forms long strands of tough insoluble protein that are bound to the platelets. Factor XIII completes the cross-linking of fibrin so that it hardens and contracts. The cross-linked fibrin forms a mesh atop the platelet plug that completes the clot. Fibrin was discovered[2] by Marcello Malpighi in 1666.[3]

Role in disease

From Fibrinogen to Fibrin with the help of Thrombin and Factor XIII.

Excessive generation of fibrin due to activation of the

hemorrhage
.

Dysfunction or disease of the liver can lead to a decrease in the production of fibrin's inactive precursor,

hypofibrinogenaemia, dysfibrinogenaemia, and hypodysfibrinogenemia
.

Reduced, absent, or dysfunctional fibrin is likely to render patients as hemophiliacs.

Physiology

Cross-linking by thrombin and stabilization by activated factor XIII

Fibrin from various different animal sources is generally

glycosylated with complex type biantennary asparagine-linked glycans. Variety is found in the degree of core fucosylation and in the type of sialic acid and galactose linkage.[4]

Structure

Crystal structure of the double-d fragment from human fibrin

Fibrin is formed after thrombin cleavage of fibrinopeptide A (FPA) from fibrinogen Aalpha-chains, thus initiating fibrin polymerization. Double-stranded fibrils form through end-to-middle domain (D:E) associations, and concomitant lateral fibril associations and branching create a clot network.

D-glucosamine (C6H13NO5).[7]

See also

References

  1. PMID 14603379
    .
  2. ^ Arney, Kat (31 May 2017). "Fibrin and fibrinogen". Chemistry World. Cambridge, UK: Royal Society of Chemistry. Retrieved 25 November 2022.
  3. ^ "350th Anniversary of the Discovery of Fibrin (1666–2016) History of Fibrin(ogen)". IFRS. Winston-Salem: International Fibrinogen Research Society. 23 June 2016. Retrieved 25 November 2022.
  4. PMID 17539604
    .
  5. .
  6. .

External links

This page is based on the copyrighted Wikipedia article: Fibrin. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy