Fumarole

Source: Wikipedia, the free encyclopedia.

Fumarole at Sol de Mañana, Bolivia

A fumarole (or fumerole)

volcanic activity, but fumarole activity can also precede a volcanic eruption and has been used for eruption prediction
. Most fumaroles die down within a few days or weeks of the end of an eruption, but a few are persistent, lasting for decades or longer. An area containing fumaroles is known as a fumarole field.

The predominant vapor emitted by fumaroles is steam, formed by the circulation of groundwater through heated rock. This is typically accompanied by volcanic gases given off by magma cooling deep below the surface. These volcanic gases include

, and other gases. A fumarole that emits significant sulfur compounds is sometimes called a solfatara.

Fumarole activity can break down rock around the vent, while simultaneously depositing sulfur and other minerals. Valuable hydrothermal mineral deposits can form beneath fumaroles. However, active fumaroles can be a hazard due to their emission of hot, poisonous gases.

Description

Sampling gases at a fumarole on Mount Baker in Washington, United States
Fumaroles at Vulcano, Sicily

A fumarole (or fumerole; from French fumerolle, a domed structure with lateral openings, built over a kitchen to permit the escape of smoke[2]) is an opening in a planet's crust which emits steam and gases, but no liquid or solid material.[3] The temperature of the gases leaving the vent ranges from about 100 to 1,000 °C (210 to 1,800 °F).[4] The steam forms when groundwater is superheated by hot rock, then flashes (boils due to depressurization) as it approaches the surface.[5]

In addition to steam, gases released by fumaroles include

Kilauea in Hawaii, US, contain almost no hydrogen chloride or hydrogen fluoride.[3] The gases may also include traces of carbonyl sulfide, carbon disulfide, hydrogen, methane, or carbon monoxide.[6] A fumarole that emits sulfurous gases can be referred to as a solfatara (from old Italian solfo, "sulfur"[7][8]). Acid-sulfate hot springs can be formed by fumaroles when some of the steam condenses at the surface. Rising acidic vapors from below, such as CO2 and H2S, will then dissolve, creating steam-heated low-pH hot springs.[9]

Fumaroles are normally associated with the late stages of volcanic activity,[10] although they may also precede volcanic activity[4] and have been used to predict volcanic eruptions.[5] In particular, changes in the composition and temperature of fumarole gases may point to an imminent eruption.[3] An increase in sulfur oxide emissions is a particularly robust indication that new magma is rising from the depths, and may be detectable months to years before the eruption. Continued sulfur oxide emissions after an eruption is an indication that magma is continuing to rise towards the surface.[6]

Fumaroles may occur along tiny cracks, along long fissures, or in chaotic clusters or fields. They also occur on the surface of

thermal springs and gas vents where shallow magma or hot igneous rocks release gases or interact with groundwater.[12] When they occur in freezing environments, fumaroles may cause fumarolic ice towers
.

Fumaroles may persist for decades or centuries if located above a persistent heat source; or they may disappear within weeks to months if they occur atop a fresh volcanic deposit that quickly cools.

Kilauea caldera, but most fumaroles in Hawaii last no more than a few months.[3] There are still numerous active fumaroles at Yellowstone National Park, US,[14] some 70,000 years after the most recent eruption.[15]

Economic resources and hazards

Kawah Ijen
.

The acidic fumes from fumaroles can break down the rock around the vents, producing brightly colored alteration haloes.

iron oxides to produce red to reddish-brown clay.[16] The same process can produce valuable hydrothermal ore deposits at depth.[5]

Fumaroles emitting sulfurous vapors form surface deposits of sulfur-rich minerals and of fumarole minerals. Sulfur crystals at Sulfur Banks near Kilauea can grow to 2 centimeters (0.8 in) in length, and considerable sulfur has been deposited at Sulfur Cone within Mauna Loa caldera.[3] Places in which these deposits have been mined include:

Sulfur mining in Indonesia is sometimes done for low pay, by hand, without respirators or other protective equipment.[17]

In April 2006 fumarole emissions killed three ski-patrol workers east of Chair 3 at Mammoth Mountain Ski Area in California. The workers were overpowered by an accumulation of toxic fumes (a mazuku) in a crevasse they had fallen into.[25][26]

Occurrences

Fumaroles are found around the world in areas of volcanic activity. A few notable examples include:

On Mars

The formation known as

Gusev Crater on Mars, which was examined by the Mars Exploration Rover (MER) Spirit, is suspected to be the eroded remains of an ancient and extinct fumarole.[35]

See also

References

  1. ^ "fumerole – Definition and meaning". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 4 June 2023.
  2. ^ "fumarole". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  3. ^ .
  4. ^ .
  5. ^ .
  6. ^ .
  7. ^ "solfatara". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  8. ^ "Solfatara". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 20 February 2020.
  9. .
  10. .
  11. ^ a b Public Domain This article incorporates public domain material from "Fumarole". USGS Photo Glossary. United States Geological Survey. Retrieved 6 February 2019.
  12. . Retrieved 6 June 2015. fumarole field[:] A group of cool fumaroles.
  13. ^ Hildreth, W.; Fierstein, J. (2012). The Novarupta-Katmai eruption of 1912– largest eruption of the twentieth century; centennial perspectives. Reston: USGS Professional Paper 1791. p. 135.
  14. ^ "Fumaroles". Volcanic Features and Landforms. National Park Service. Retrieved 1 March 2022.
  15. ^ "Summary of Eruption History". Yellowstone Geology and History. U.S. Geological Survey. Retrieved 1 March 2022.
  16. ^ Macdonald, Abbott & Peterson 1983, p. 134.
  17. ^ a b "Kawah Ijen: Between potential & threat". The Jakarta Post. 19 December 2011.
  18. ^ Dukehart, Coburn (17 November 2015). "The Struggle and Strain of Mining "Devil's Gold"". National Geographic. Archived from the original on 9 April 2021. Retrieved 1 March 2022.
  19. ^ Pfeiffer, Tom (2006). "Welirang volcano photos". Volcano Discovery. Retrieved 1 March 2022.
  20. ^ Global Volcanism Program, National Museum of Natural History, Smithsonian Institution
  21. .
  22. ^ "Eruption on Whakaari White Island kills 10 people". nzhistory.govt.nz. Retrieved 26 October 2021.
  23. ^ "Disaster at White Island". New Zealand Geographic. Retrieved 26 October 2021.
  24. .
  25. ^ Hymon, Steve; Covarrubias, Amanda (9 April 2006). "How Routine Turned to Tragedy at Mammoth". Los Angeles Times. Retrieved 9 May 2011.
  26. S2CID 207182190
    .
  27. .
  28. .
  29. .
  30. .
  31. ^ "Fumaroles". Manaaki Whenua Landcare Research. Retrieved 1 March 2022.
  32. .
  33. ^ "Morne Trois Pitons National Park". UNESCO. 1997. Retrieved 28 July 2020.
  34. ^ "Hydrothermal Features". Yellowstone National Park. U.S. National Park Service. Retrieved 1 March 2022.
  35. ^ R.V.Morris, S.W.Squyres, et al. "The Hydrothermal System at Home Plate in Gusev Crater, Mars". Lunar & Planetary Science XXXIX(2008)

External links