GDF2

Source: Wikipedia, the free encyclopedia.
GDF2
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_016204

NM_019506

RefSeq (protein)

NP_057288

NP_062379

Location (UCSC)Chr 10: 47.32 – 47.33 MbChr 14: 33.66 – 33.67 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Growth differentiation factor 2 (GDF2) also known as bone morphogenetic protein (BMP)-9 is a protein that in humans is encoded by the GDF2 gene.[5] GDF2 belongs to the transforming growth factor beta superfamily.

Structure

GDF2 contains an

C-terminal transforming growth factor beta superfamily domain (325–428).[6] GDF2 (BMP9) is secreted as a pro-complex consisting of the BMP9 growth factor dimer non-covalently bound to two BMP9 prodomain molecules in an open-armed conformation.[7]

Function

GDF2 has a role in inducing and maintaining the ability of embryonic

endothelial-specific type I receptor of the TGF-beta receptor family.[10] Endoglin, a type I membrane glycoprotein that forms the TGF-beta receptor complex, is a co-receptor of ALK1 for GDF2/BMP-9 binding. Mutations in ALK1 and endoglin cause hereditary hemorrhagic telangiectasia (HHT), a rare but life-threatening genetic disorder that leads to abnormal blood vessel formation in multiple tissues and organs of the body.[11]

GDF2 is one of the most potent BMPs to induce orthotopic bone formation in vivo. BMP3, a blocker of most BMPs seems not to affect GDF2.[12]

GDF2 induces the differentiation of

mesenchymal stem cells (MSCs) to an osteoblast lineage. The Smad signaling pathway of GDF2 target HEY1 inducing the differentiation by up regulating it.[13] Augmented expression of HEY1 increase the mineralization of the cells. RUNX2 is another factor who's up regulate by GDF2. This factor is known to be essential for osteoblastic differentiation.[14]

Interactions

The signaling complex for bone morphogenetic proteins (

ALK1, then form complex with type II receptors.[15]

Associate Disease

Mutations in GDF2 have been identified in patients with a vascular disorder phenotypically overlapping with hereditary hemorrhagic telangiectasia.[17]

Signaling

Like other

Smad1,5,8. The activation of this pathway has been documented in all cellular types analyzed up to date, including hepatocytes and HCC cells.[18][19] GDF2 also triggers Smad-2/Smad-3 phosphorylation in different endothelial cell types.[20][21]

Another pathway for GDF2 is the induced non-canonical one. Little is known about this type of pathway in GDF2. GDF2 activate

JNK in osteogenic differentiation of mesenchymal progenitor cells (MPCs). GDF2 also triggers p38 and ERK activation who will modulate de Smad pathway, p38 increase the phosphorylation of Smad 1,5,8 by GDF2 whereas ERK has the opposite effect.[21]

The transcriptional factor p38 activation induced by GDF2 has been documented in other cell types such as osteosarcoma cells,[22] human osteoclasts derived from cord blood monocytes,[23] and dental follicle stem cells.[24]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000263761Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000072625Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 10849432
    .
  6. ^ Universal protein resource accession number Q9UK05 at UniProt.
  7. PMID 25751889
    .
  8. ^ .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. ^ .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. ^ .
  22. .
  23. .
  24. .

Further reading

This page is based on the copyrighted Wikipedia article: GDF2. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy