Iron(II) selenide

Source: Wikipedia, the free encyclopedia.

Iron(II) selenide
Names
IUPAC name
Iron(II) selenide
Identifiers
3D model (
JSmol
)
ECHA InfoCard
100.013.798 Edit this at Wikidata
EC Number
  • 215-177-1
UNII
  • InChI=1S/Fe.Se
    Key: WALCGGIJOOWJIN-UHFFFAOYSA-N
  • [Fe]=[Se]
Properties
FeSe
Molar mass 134.807 g/mol
Appearance black crystals
Density 4.72 g/cm3
Melting point 965 °C (1,769 °F; 1,238 K)
0.975 mg/100mL[citation needed]
Structure
hexagonal / tetragonal
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
toxic
Related compounds
Other anions
Iron(II) oxide
Iron(II) sulfide
Iron(II) telluride
Other cations
Manganese(II) selenide
Cobalt(II) selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Iron(II) selenide refers to a number of

achavalite
.

More selenium rich iron selenide phases are the γ phases (γ and γˈ), assigned the Fe3Se4

dzharkenite
.

It is used in electrical semiconductors.[citation needed]

Superconductivity

β-FeSe is the simplest iron-based superconductor but with diverse properties.[2] It starts to superconduct at 8 K at normal pressure[3] but its critical temperature (Tc) is dramatically increased to 38 K under pressure,[4] by means of intercalation,[2] or after quenching at high pressures.[5] The combination of both intercalation and pressure results in re-emerging superconductivity at 48 K.[2]

In 2013 it was reported that a single atomic layer of FeSe

epitaxially grown on SrTiO3 is superconductive with a then-record transition temperature for iron-based superconductors of 70 K.[6] This discovery has attracted significant attention and in 2014 a superconducting transition temperature of over 100K was reported for this system.[7]

References