Bismuth selenide

Source: Wikipedia, the free encyclopedia.
Bismuth selenide
Names
IUPAC name
selenoxobismuth, selanylidenebismuth [1]
Identifiers
3D model (
JSmol
)
ChemSpider
ECHA InfoCard
100.031.901 Edit this at Wikidata
EC Number
  • 235-104-7
UNII
  • InChI=1S/2Bi.3Se
    Key: OMEPJWROJCQMMU-UHFFFAOYSA-N
  • [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3]
Properties
Bi2Se3
Molar mass 654.8 g/mol [2]
Appearance Dull grey [3]
Density 6.82 g/cm3[2]
Melting point 710 °C (1,310 °F; 983 K)[2]
insoluble
Solubility insoluble in organic solvents
soluble in strong acids [2]
Structure
rhombohedral
Thermochemistry
Std enthalpy of
formation
fH298)
-140 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic [3]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Related compounds
Other anions
Bismuth trisulfide
Bismuth telluride
Other cations
Arsenic triselenide
Antimony triselenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Bismuth selenide (Bi2Se3) is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

Properties

Bismuth selenide is a

stoichiometric bismuth selenide should be a semiconductor with a gap of 0.3 eV, naturally occurring selenium vacancies act as electron donors, so Bi2Se3 is intrinsically n-type.[5][6][7]

Bismuth selenide has a topologically insulating ground-state.[8] Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators,[6][9][10][11] which later became the subject of world-wide scientific research.[12][13][14][15]

Bismuth selenide is a van der Waals material consisting of covalently bound five-atom layers (quintuple layers) which are held together by van der Waals interactions[16] and spin-orbit coupling effects.[17] Although the (0001) surface is chemically inert (mostly due to the inert-pair effect of Bi[17]), there are metallic surface states, protected by the non-trivial topology of the bulk. For this reason, the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research. For instance, different phases of antimony layers can be grown on Bi2Se3,[18][19] by means of which topological pn-junctions can be realised.[20] More intriguingly, Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non-trivial topological properties of the Bi2Se3 substrate.[21][22]

Production

Although bismuth selenide occurs naturally (as the mineral guanajuatite) at the Santa Catarina Mine in Guanajuato, Mexico[23] as well as some sites in the United States and Europe,[24] such deposits are rare and contain a significant level of sulfur[24] atoms as an impurity. For this reason, most bismuth selenide used in research into potential commercial applications is synthesized. Commercially-produced samples are available for use in research, but the concentration of selenium vacancies is heavily dependent upon growth conditions,[25][26] and so bismuth selenide used for research is often synthesized in the laboratory.

A stoichiometric mixture of elemental bismuth and selenium, when heated above the melting points of these elements in the absence of air, will become a liquid that freezes to crystalline Bi2Se3.[27] Large single crystals of bismuth selenide can be prepared by the Bridgman–Stockbarger method.[28]

See also

References

  1. ^ "Bismuth(III) selenide - PubChem Public Chemical Database". Pubchem.ncbi.nlm.nih.gov. 2011-10-21. Retrieved 2011-11-01.
  2. ^ a b c d "bismuth selenide | Bi2Se3". ChemSpider. Retrieved 2011-11-01.
  3. ^ a b "Bismuth Selenide | Bismuth Selenide". Espimetals.com. Archived from the original on 2011-09-08. Retrieved 2011-11-01.
  4. S2CID 250922249
    .
  5. .
  6. ^ .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ "The Strange Topology That Is Reshaping Physics". Scientific American. Retrieved 2020-04-22.
  14. ^ "Welcome to the Weird Mathematical World of Topology". Discover Magazine. Retrieved 2020-04-22.
  15. PMID 27625422
    .
  16. .
  17. ^ .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. ^ "Santa Catarina Mine, Rancho Calvillo, Santa Rosa, Sierra de Santa Rosa, Guanajuato Municipality, Guanajuato, Mexico". mindat.org. Retrieved April 3, 2022.
  24. ^ a b Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. "Guanajuatite" (PDF). Handbook of Mineralogy. Mineralogical Society of America. Retrieved April 3, 2022.
  25. S2CID 118621215
    .
  26. .
  27. .
  28. .