Phosphoribosyl pyrophosphate

Source: Wikipedia, the free encyclopedia.
Phosphoribosyl pyrophosphate
Names
IUPAC name
α-D-Ribofuranose 1′-(trihydrogen diphosphate) 5′-(dihydrogen phosphate)
Systematic IUPAC name
(2R,3R,4S,5R)-3,4-Dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl trihydrogen diphosphate
Other names
5-phospho-α-D-ribose 1-diphosphate
PRPP
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
DrugBank
MeSH Phosphoribosyl+pyrophosphate
UNII
  • InChI=1S/C5H13O14P3/c6-3-2(1-16-20(8,9)10)17-5(4(3)7)18-22(14,15)19-21(11,12)13/h2-7H,1H2,(H,14,15)(H2,8,9,10)(H2,11,12,13)/t2-,3-,4-,5-/m1/s1 checkY
    Key: PQGCEDQWHSBAJP-TXICZTDVSA-N checkY
  • InChI=1/C5H13O14P3/c6-3-2(1-16-20(8,9)10)17-5(4(3)7)18-22(14,15)19-21(11,12)13/h2-7H,1H2,(H,14,15)(H2,8,9,10)(H2,11,12,13)/t2-,3-,4-,5-/m1/s1
    Key: PQGCEDQWHSBAJP-TXICZTDVBW
  • O=P(O[C@H]1O[C@@H]([C@@H](O)[C@H]1O)COP(=O)(O)O)(O)OP(=O)(O)O
Properties
C5H13O14P3
Molar mass 390.07 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Phosphoribosyl pyrophosphate (PRPP) is a

cobalamin,[5] and the amino acid tryptophan also contain fragments derived from PRPP.[6] It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase:[7]

It plays a role in transferring phospho-ribose groups in several reactions, some of which are

salvage pathways:[8]

Enzyme Reactant Product
adenine phosphoribosyltransferase adenine AMP[9]
hypoxanthine-guanine phosphoribosyltransferase guanine GMP[10]
hypoxanthine-guanine phosphoribosyltransferase hypoxanthine
IMP[10]
nicotinate phosphoribosyltransferase
nicotinate
nicotinate riboside[11]
orotate phosphoribosyltransferase
orotate
OMP[12]
uracil phosphoribosyltransferase uracil UMP[13]
xanthine phosphoribosyltransferase xanthine
XMP[14]

In de novo generation of purines, the enzyme amidophosphoribosyltransferase acts upon PRPP to create phosphoribosylamine.[2] The histidine biosynthesis pathway involves the reaction between PRPP and ATP, which activates the latter to ring cleavage. Carbon atoms from ribose in PRPP form the linear chain and part of the imidazole ring in histidine.[15][16][17] The same is true for the biosynthesis of tryptophan, with the first step being N-alkylation of anthranilic acid catalysed by the enzyme anthranilate phosphoribosyltransferase.[15][18][19]

Increased PRPP

Increased levels of PRPP are characterized by the overproduction and accumulation of uric acid leading to hyperuricemia and hyperuricosuria. It is one of the causes of gout.[20]

Increased levels of PRPP are present in

hypoxanthine guanine phosphoribosyl transferase (HGPRT) causes this accumulation, as PRPP is a substrate used by HGPRT during purine salvage.[21]

See also

References

  1. ^ R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-02.
  2. ^
    PMID 18712276
    .
  3. .
  4. .
  5. ^ R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-10.
  6. PMID 26237670
    .
  7. .
  8. ^ R. Caspi (2022-02-15). "5-phospho-α-D-ribose 1-diphosphate". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-15.
  9. S2CID 40788077
    .
  10. ^ .
  11. .
  12. .
  13. .
  14. .
  15. ^
    OCLC 910538334.{{cite book}}: CS1 maint: location missing publisher (link
    )
  16. ^ R. Caspi (2008-10-10). "Pathway: L-histidine biosynthesis". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-17.
  17. S2CID 23733445
    .
  18. ^ C.A. Fulcher (2010-02-12). "Pathway: L-tryptophan biosynthesis". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-17.
  19. PMID 2679363
    .
  20. .
  21. .