Tropomyosin receptor kinase A

Source: Wikipedia, the free encyclopedia.
NTRK1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002529
NM_001007792
NM_001012331

NM_001033124

RefSeq (protein)

NP_001007793
NP_001012331
NP_002520

NP_001028296

Location (UCSC)Chr 1: 156.82 – 156.88 MbChr 3: 87.69 – 87.7 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Tropomyosin receptor kinase A (TrkA),[5] also known as high affinity nerve growth factor receptor, neurotrophic tyrosine kinase receptor type 1, or TRK1-transforming tyrosine kinase protein is a protein that in humans is encoded by the NTRK1 gene.[6]

This gene encodes a member of the neurotrophic tyrosine kinase receptor (NTKR) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself (autophosphorylation) and members of the MAPK pathway. The presence of this kinase leads to cell differentiation and may play a role in specifying sensory neuron subtypes. Mutations in this gene have been associated with congenital insensitivity to pain with anhidrosis, self-mutilating behaviors, intellectual disability and/or cognitive impairment and certain cancers. Alternate transcriptional splice variants of this gene have been found, but only three have been characterized to date.[7]

Function and Interaction with NGF

TrkA is the high affinity

Nerve Growth Factor, or "NGF". As a kinase, TrkA mediates the multiple effects of NGF, which include neuronal differentiation, neural proliferation, nociceptor response, and avoidance of programmed cell death.[8]

The binding of NGF to TrkA leads to a ligand-induced dimerization, and a proposed mechanism by which this receptor and ligand interact is that two TrkA receptors associate with a single NGF ligand.[9] This interaction leads to a cross linking dimeric complex where parts of the ligand-binding domains on TrkA are associated with their respective ligands.[9] TrkA has five binding domains on its extracellular portion, and the domain TrkA-d5 folds into an immunoglobulin-like domain which is critical and adequate for the binding of NGF.[10] After being immediately bound by NGF, the NGF/TrkA complex is brought from the synapse to the cell body through endocytosis where it then activates the NGF-dependent transcriptional program.[9] Upon activation, the tyrosine residues are phosphorylated within the cytoplasmic domain of TrkA, and these residues then recruit signaling molecules, following several pathways that lead to the differentiation and survival of neurons.[11] Two pathways that this complex acts to promote growth is through the Ras/MAPK pathway and the PI3K/Akt pathway.[9]

Family members

The three transmembrane receptors TrkA,

TrkC binds and is activated by NT-3.[13] In one study, the Trk gene was removed from embryonic mice stem cells which led to severe neurological disease, causing most mice to die one month after birth.[14]
Thus, Trk is the mediator of developmental and growth processes of NGF, and plays a critical role in the development of the nervous system in many organisms.

There is one other NGF receptor besides TrkA, called the "

"). As opposed to TrkA, the LNGFR plays a somewhat less clear role in NGF biology. Some researchers have shown the LNGFR binds and serves as a "sink" for neurotrophins. Cells which express both the LNGFR and the Trk receptors might therefore have a greater activity – since they have a higher "microconcentration" of the neurotrophin. It has also been shown, however, that in the absence of a co-expressed TrkA, the LNGFR may signal a cell to die via apoptosis – so therefore cells expressing the LNGFR in the absence of Trk receptors may die rather than live in the presence of a neurotrophin.

Role in disease

There are several studies that highlight TrkA's role in various diseases.[15] In one study conducted on two rat models, an inhibition of TrkA with AR786 led to a reduction in joint swelling, joint damage, and pain caused by inflammatory arthritis.[15] Thus, blocking the binding of NGF allows for the alleviation of side effects from inherited arthritis, potentially highlighting a model to aid human inflammatory arthritis.[15]

In one study done on patients with functional dyspepsia, scientists found a significant increase in TrkA and nerve growth factor in gastric mucosa.[16] The increase of TrkA and nerve growth factor is linked to indigestion and gastric symptoms in patients, thus this increase may be linked with the development of functional dyspepsia.[16]

In one study, a total absence of TrkA receptor was found in keratoconus-affected corneas, along with an increased level of repressor isoform of Sp3 transcription factor.[17]

Gene fusions involving NTRK1 have been shown to be oncogenic, leading to the constitutive TrkA activation.

next generation sequencing or fluorescence in situ hybridization.[18]

While in some contexts, Trk A is oncogenic, in other contexts TrkA has the ability to induced terminal differentiation in cancer cells, halting cellular division. In some cancers, like

Regulation

The levels of distinct proteins can be regulated by the "

p75NTR
.

Interactions

TrkA has been shown to

interact
with:

Ligands

TRKA receptor domain 5 (purple) bound to NGF (red)

Small molecules such as

TrkC) both in-vitro and in-vivo by interacting with the cytoplasmic juxtamembrane domain of TrkA.[38]

Role in cancer

TrkA has a dual role in cancer. TrkA was originally cloned from a colon tumor; the cancer occurred via a translocation, which resulted in the activation of the TrkA kinase domain. Although originally identified as an oncogenic fusion in 1982,

TrkC) gene fusions and other oncogenic alterations in a number of tumor types. The mechanism of activation of the Human Trk oncogene is suspected to involve a folding of its kinase domain, leading the receptor to remain constitutively active.[40] In contrast, Trk A also has the potential to induce differentiation and spontaneous regression of cancer in infants.[19]

Inhibitors in development

There are several

Trk inhibitors that have been FDA approved, and have been clinically seen to counteract the effects of Trk over-expression by acting as a Trk inhibitor.[41]

Entrectinib (formerly RXDX-101) is an investigational drug developed by Ignyta, Inc., which has potential antitumor activity. It is a selective pan-trk receptor tyrosine kinase inhibitor (TKI) targeting gene fusions in trkA, trkB, and trkC (coded by NTRK1, NTRK2, and NTRK3 genes) that is currently in phase 2 clinical testing.[42]

""

TrkC) and the drug is used as a treatment for tumors with Trk fusions.[12] A clinical study analyzing the efficiency of the drug found that Larotrectinib was an effective anti tumor treatment, and worked efficiently regardless of age of the patient or tumor type; additionally, the drug did not have long lasting side effects, highlighting the beneficial use of this drug in treating Trk fusions.[12]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198400Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028072Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. . Another common feature of neurotrophins is that they produce their physiologic effects by means of the tropomyosin receptor kinase (Trk) receptor family (also known as the tyrosine receptor kinase family). ...
    Trk receptors
    All neurotrophins bind to a class of highly homologous receptor tyrosine kinases known as Trk receptors, of which three types are known: TrkA, TrkB, and TrkC. These transmembrane receptors are glycoproteins whose molecular masses range from 140 to 145 kDa. Each type of Trk receptor tends to bind specific neurotrophins: TrkA is the receptor for NGF, TrkB the receptor for BDNF and NT-4, and TrkC the receptor for NT-3.However, some overlap in the specificity of these receptors has been noted.
  6. .
  7. ^ "Entrez Gene: NTRK1 neurotrophic tyrosine kinase, receptor, type 1".
  8. PMID 2869410
    .
  9. ^ .
  10. ^ .
  11. .
  12. ^ .
  13. .
  14. .
  15. ^ .
  16. ^ .
  17. .
  18. ^ .
  19. ^ .
  20. .
  21. ^ .
  22. .
  23. ^ .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. ^ .
  31. ^ .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. ^ "Promising entrectinib clinical trial data". ScienceDaily. 18 April 2016.

External links

Further reading