1960 Valdivia earthquake

Coordinates: 38°14′S 73°03′W / 38.24°S 73.05°W / -38.24; -73.05
Source: Wikipedia, the free encyclopedia.

1960 Valdivia earthquake
cm/s[4]
TsunamiUp to 25 m (82 ft)
LandslidesYes
Casualties1,000–6,000[5]

The 1960 Valdivia earthquake and tsunami (Spanish: Terremoto de Valdivia) or the Great Chilean earthquake (Gran terremoto de Chile) on 22 May 1960 was the

GMT, 15:11 local time), and lasted for approximately 10 minutes. The resulting tsunamis affected southern Chile, Hawaii, Japan, the Philippines, eastern New Zealand, southeast Australia, and the Aleutian Islands
.

The

Santiago, with Valdivia being the most affected city. The tremor caused localised tsunamis that severely battered the Chilean coast, with waves up to 25 metres (82 ft). The main tsunami traveled across the Pacific Ocean and devastated Hilo, Hawaii
, where waves as high as 10.7 metres (35 ft) were recorded over 10,000 kilometres (6,200 mi) from the epicenter.

The death toll and monetary losses arising from this widespread disaster are not certain.[6] Various estimates of the total number of fatalities from the earthquake and tsunamis have been published, ranging between 1,000 and 6,000 killed.[5] Different sources have estimated the monetary cost ranged from US$400 million to $800 million[7] (or US$4.1 billion to $8.2 billion in 2023, adjusted for inflation).[8]

Geologic context

Chile is located along the

, off the coast of southern Chile. Because of its geography, Chile remains one of the most seismically active countries in the world.

Chile at the intersection between the Nazca and South American plates, with arrows depicting directionality of plate movements

Tectonic interpretation

The Valdivia earthquake (light blue at the bottom left of this graph) released almost a quarter of all global seismic energy between 1906 and 2005

The focus of the earthquake was relatively shallow at 33 km (21 mi), considering that earthquakes in northern Chile and Argentina may reach depths of 70 km (43 mi).

A 2019 research paper postulates that the

Liquiñe-Ofqui fault had a Mw 9.07 strike-slip subevent along with the Mw 9.37 main thrust sub-event which could help account for how the plate boundary event seemingly "overspent" its tectonic budget. In other words, the previous and current more widely accepted explanation for the earthquake involves the Peru-Chile Trench slipping further than its accumulated slip deficit (the amount of slip available for an earthquake) should allow. The alternative explanation, with two faults slipping nearly simultaneously, could help explain the true mechanism of the earthquake.[9][10]

Geophysicists consider it a matter of time before this earthquake will be surpassed in magnitude by another. The earthquake's rupture zone was ≈ 800 km (500 mi) long, stretching from Arauco (37° S) to below the Chiloé Archipelago (44° S). Rupture velocity, the speed at which a rupture front expands across the surface of the fault, has been estimated as 3.5 km (2.2 mi) per second.[11] The average slip across all 27 Nazca subfaults was estimated to be 11 m, with 25–30 m of slip 200–500 km south of the epicenter on offshore subfaults.[12]

While the Valdivia earthquake was extraordinarily large, the 2016 Chiloé earthquake hints that it did not release all the potential slip in that segment of the plate interface.[13]

Earthquake sequence

Concepción earthquakes

The 1960 Chilean earthquakes were a sequence of strong earthquakes that affected Chile between 21 May and 6 June 1960, centered in the

UTC-4 on 21 May 1960. Its epicenter was near Curanilahue. Telecommunications to southern Chile were cut off and President Jorge Alessandri cancelled the traditional ceremony of the Battle of Iquique memorial holiday to oversee the emergency assistance efforts.[citation needed] The second and third Concepción earthquakes occurred the next day at 06:32 UTC-4 (7.1 Mw) and 14:55 UTC-4 (7.8 Mw) on 22 May. These earthquakes formed a southward migrating foreshock sequence to the main Valdivia shock, which occurred just 15 minutes after the third event.[14]

The earthquake interrupted and effectively ended a protest by coal miners from Lota, who were attempting to march to Concepción to demand higher salaries.[15]

Valdivia earthquake

The Valdivia earthquake occurred at 15:11 UTC-4 on 22 May, and affected all of Chile between

Corral
, the main port of Valdivia, the water level rose 4 m (13 ft) before it began to recede. At 16:20 UTC-4, a wave of 8 m (26 ft) struck the Chilean coast, mainly between Concepción and Chiloé. Another wave measuring 10 m (33 ft) was reported ten minutes later.

Hundreds of people were already reported dead by the time the tsunami struck. One ship, Canelo, starting at the mouth of the Valdivia River, sank after being moved 1.5 km (0.93 mi) backward and forward in the river; as of 2005, its mast was still visible from the road to Niebla.[16]

potable water became a serious problem in one of Chile's rainiest regions.[17][18]

The earthquake did not strike all the territory with the same strength; measured with the

Puyehue volcano
, erupted. Other volcanoes may also have erupted, but none were recorded because of the lack of communication in Chile at the time. The relatively low death toll in Chile (5,700) is explained in part by the low population density in the region, and by building practices that took into account the area's high geological activity.

Earthquake lights were reported in Purén.[21]

Aftershocks

One of the main aftershocks occurred on 6 June in Aysén Region.[22] This magnitude 7.7 earthquake probably occurred along the Liquiñe-Ofqui Fault, meaning that the fault would have moved as a consequence of the 22 May Valdivia earthquake.[22]

Natural disasters

Tsunamis

Pacific
at one-hour intervals

Earthquake-induced

eastern New Zealand, southeast Australia, and the Aleutian Islands. Some localized tsunamis severely battered the Chilean coast, with waves up to 25 m (82 ft). The main tsunami crossed the Pacific Ocean at a speed of several hundred km/h and devastated Hilo, Hawaii, killing 61 people.[24] Most of the tsunami-related deaths in Japan occurred in the northeast Sanriku region of Honshu.[13]

The Chilean coast was devastated by a tsunami from Mocha Island (38° S) to Aysén Region (45° S). Across southern Chile, the tsunami caused huge loss of life, damage to port infrastructure, and the loss of many small boats. Further north, the port of Talcahuano did not suffer any major damage, only some flooding. Some tugboats and small sailboats were stranded on Rocuant Island near Talcahuano.[25]

In Valdivia the tsunami swell penetrated along Calle-Calle River as far as Huellelhue putting afloat piles of firewood that lay in the fields.[26]

After the 21 May Concepción earthquake, people in Ancud sought refuge in boats. A carabinero (police) boat, Gloria, was towing a few of these boats when the second earthquake struck on 22 May. As the sea regressed Gloria became stranded between Cerro Guaiguén and Cochinos Island. The stranded boat was wrecked when a tsunami wave engulfed it.[25]

All the new infrastructure of the small port of

metres above sea level there. The boat Isabella in Bahía Mansa quickly left the port but lost its anchors.[25]

Wrecks of Carlos Haverbeck (top) and Canelo (bottom).

In the Valdivia River and Corral Bay, several vessels were wrecked by the earthquake, among them Argentina, Canelo, Carlos Haverbeck, Melita, and the salvaged remnants of Penco. Canelo was anchored at Corral when the quake struck, filling a cargo of wood and other products destined for northern Chile. The engine of Canelo was warmed up after the earthquake. After hours of drifting around in Corral Bay and Valdivia River, the ship was wrecked and subsequently abandoned by its crew at 1800 local time. Two men on board Canelo died in the incident. As of 2000, the remnants of Canelo were still visible.[25]

Santiago, another ship anchored at Corral at the time of the quake, managed to leave Corral in a bad state but was wrecked off the coast of Mocha Island on 24 May.[25] The schooner La Milagrosa departed from Queule on 22 May to load a cargo of Fitzroya wood shingles in a small port south of Corral. La Milagrosa was battered by the currents and waves of the tsunami for four days while moving south. Outside Corral the crew rescued six nearly unconscious and dehydrated children on board two boats. The boats found were used to navigate in Valdivia River and Corral Bay but had drifted into the high sea.[27]

Hilo, Hawaii, after the tsunami

The coastal localities of Mississippi and Mehuín were struck by the tsunami causing the loss of fishing boats.[28] 150 boats, most of them used for fishing are reported to have "disappeared" in Mehuín.[28] Some kilometres north of Mahuín at the coastal town of Queule, a carabinero reported hundreds of people dead or missing some days after the tsunami. Historians Yoselin Jaramillo and Ismael Basso report that people in Queule decades later know about 50 people to have died because of the earthquake and tsunami.[29]

Landslides

Effect of the tsunami at Kamaishi, Japan

The earthquake triggered numerous landslides, mainly in the steep glacial valleys of the southern Andes. Within the Andes, most landslides occurred on forested mountain slopes around the Liquiñe-Ofqui Fault. Some of these areas remain sparsely vegetated while others have naturally developed more or less pure stands of Nothofagus dombeyi.[30] These landslides did not cause many fatalities nor significant economic losses because most of the areas were uninhabited, with only minor roads.

One landslide caused destruction and alarm following its blockage of the outflow of

Route 215-CH, which connects to Bariloche in Argentina through Cardenal Antonio Samoré Pass
.

While most landslides clustered around north–south strips in the Andes, other areas that were affected by large numbers of landslides were the coast, mainly the foot of the Chilean Coast Range, and the shores of Llanquihue Lake.[19]

Seiches

A

San Carlos de Bariloche city.[33]

Riñihue Lake's flood

During the Great Chilean earthquake, several

Valdivia near the coast.[35]

As the San Pedro River was blocked, the water level of Riñihue Lake started to rise quickly. Each meter the water level rose was equivalent to 20 million cubic meters, which meant that 480 million cubic meters of water would release into the San Pedro River (easily overpowering its flow capacity of 400 cubic metres (14,000 cu ft) per second if it rose above the final, 24-meter-high dam. This potential disaster would have violently flooded all the settlements along the course of the river in less than five hours, with more dire consequences if the dam suddenly broke.

About 100,000 people lived in the affected zone.

dykes had to be constructed with shovels from June onwards.[34] The work was not restricted to the lake; drainages from other parts of the Seven Lakes were dammed to minimize additional flow into Riñihue Lake. These dams were removed later, with the exception of Calafquén Lake
, which still retains its dam.

By 23 June, the main dam had been lowered from 24 to 15 m (79 to 49 ft), allowing 3 billion cubic metres of water to leave the lake gradually, but still with considerable destructive power. The team was led by ENDESA engineer Raúl Sáez.

Cordón Caulle eruption

Cordón Caulle
following the earthquake

On 24 May, 38 hours after the main shock of the 1960 Valdivia earthquake, the Cordón Caulle volcano erupted.[36] The eruption was believed to have been triggered by the earthquake.[36] Between two sparsely populated and isolated Andean valleys, the eruption had few eyewitnesses and received little attention by local media, which was preoccupied with the severe and widespread damage and losses caused by the earthquake.[37] The eruption was first noticed and reported as an explosion by the crew of a United States Air Force plane that was heading to Santiago from Puerto Montt.[38]

The eruption fed a 5.5 km-long fissure on 135°

lava flows and tephra. The eruption ended on 22 July 59 days later.[37]

As a result of an evacuation plan, there were no reported human deaths associated with the eruption.[39]

Consequences and response

Urban impact

The destroyed center of Corral, Chile

The levels of material damage were relatively low given the high magnitude of the earthquake. Part of the reason behind this was the limited infrastructure development of the region next to the rupture zone.

Bío Bío, houses built from adobe and masonry proved weak, while from Araucanía to the south weak houses were mainly those built with inappropriate wood that had decayed over time.[20]

It has been estimated that about 40 percent of the houses in Valdivia were destroyed, leaving 20,000 people homeless.[40] The most affected structures were those built of concrete, which in some cases collapsed completely, because they were not built using modern earthquake engineering. Traditional wooden houses fared better; although many were uninhabitable if they did not collapse. Houses built upon elevated areas suffered considerably less damage compared to those on the lowlands, which absorbed great amounts of energy. Many city blocks with destroyed buildings in the city center remained empty until the 1990s and 2000s, with some of them still used as parking lots. Before the earthquake, some of these blocks had modern concrete buildings built after the Great Valdivia fire of 1909.[41] Around the main city square most buildings collapsed except for Edificio Prales and a few others.[42][43]

The hospital of Valdivia, built in 1939, suffered major damage and patients had to be evacuated.[44] The United States quickly set up a field hospital following the earthquake.[45] Aided by the United States, a geological survey of Valdivia was done following the earthquake and resulted in the city's first geological map. Mexico built and donated the public school Escuela México after the earthquake.[45]

Valdivia's bridges suffered only minor damage. The damage caused to Calle-Calle Bridge led to its temporary closure after the earthquake, with traffic redirected to Teja Island through Caucau River where people crossed it on boats and, reportedly, also a rudimentary and temporary wooden bridge.[46][47]

Land subsidence in

Cau-Cau River and the city's southern outskirts along Route 206 were permanently flooded.[49][50]

The earthquakes damaged an area that had suffered a long period of economic decline, which began with shifts in trade routes due to the expansion of

railroads in southern Chile and the opening of the Panama Canal in 1914.[41]

Unlike Valdivia, Osorno was saved from major destruction. In Osorno only about 20 houses were totally destroyed, although many firewalls and chimneys collapsed.[51]

Puerto Montt, a major city today, had in the early 1960s about 49,500 inhabitants. The bulk of the damage in Puerto Montt was located in the neighborhood of Barrio Modelo and the northern part of Bahía Angelmó, where artificial fills subsided.[52] Angelmó and other coastal areas of Puerto Montt were among the few urban areas that suffered "total destruction" by the earthquake.[20]

After the earthquake a myth relating the unusually warm and clear weather conditions prior to the earthquake to its triggering.

southern Chile was not particularly dry nor warm.[54]

Impact in the countryside

Destroyed infrastructure of Altos Hornos y Acerías de Corral, a steel factory closed a few years before the earthquake.

The tsunami that struck the coast of southern Chile destroyed seaside farms, killing numerous livestock and people.[55] Barns and industrial structures were destroyed by the quake.[32][55] The dairy industry was among the few industries of the affected zone that received subsidies and investment after the earthquake.[56] It received state support through a long-term policy after the earthquake.[56]

As a result of the earthquake, an international technological cooperation programme was established in the dairy sector. More specifically, the German and Danish governments helped to create the Centro Tecnológico de la Leche (the Milk Technological Centre) in the

Southern University of Chile.[57] The scholar Erik Dahmén believes that the earthquake resulted in a "creative destruction" for farmers of Southern Chile.[56]

A large area of former pastures and cultivated fields around the lower course of Cruces River was permanently flooded as a result of c. 2 m of subsidence caused by the earthquake.[58] Over the years the new wetlands were colonized chiefly by Egeria densa (Spanish: luchecillo). Egeria densa and other plants created a rich aquatic ecosystem that attracted a permanent bird fauna, notably black-necked swans.[58] The protected area of Carlos Anwandter Nature Sanctuary was created in 1981 to protect the ecosystem.[58]

A whole neighbourhood of Corral, Corral Bajo was wiped by the tsunami, while the nearby upper area, Corral Alto, suffered the loss of about 20 to 30% of its houses.[59] Among the material loses were a series stilt houses between Corral Bajo and Amargos.[59] After the earthquake many families in Corral relocated to the neighbourhood of La Aguada.[60]

The economy of the coastal town of Queule had during the 1950s developed significantly. Its economy based on fishing, agriculture and industry had grown. Queule was connected by road in 1957 to the rest of the country and the town had developed into a balneario. This era of prosperity ended with the 1960 earthquake.[61]

Further north the earthquake destroyed numerous houses in the coal-mining town of Lebu.[62]

The coal mine of Pupunahue suffered severe damage which led to coal production recovering to "acceptable levels" only by 1963.[63]

Creation of a national emergency management agency

After the earthquake, the Chilean Ministry of Economics began to develop a comprehensive reconstruction plan. The efforts of President Alessandri led to the creation of a new institutionality in order to facilitate future emergency preparation and to tackle the country's recovery after the earthquake. The then-newly named Ministry of Economics and Reconstruction was given the task of coordinating rebuilding efforts in joint venture with CORFO, an existing Chilean agency for the promotion of economic growth. Concomitantly, a ministerial-level committee, COPERE (Comisión de Planificación de la Economía y de Reconstrucción), was officially named as the government's Planning and Reconstruction Committee. CORFO acted the secretariat of the committee and was entrusted with the preparation of the reconstruction plan and its detailed execution.[64][65] COPERE had also been entrusted with coordinating provincial activities while CORFO remained the technical secretariat of those provincial committees. A comprehensive national plan for emergencies that helped Chile better prepare for future disasters was enacted, in conjunction with legislation that increased the powers of the President in times of national emergency. CORFO also created the National Company of Telecommunications (ENTEL) out of a pressing need to improve and modernize communication efforts in times of disaster.[65]

In 1974, after the 1971 eruption of Villarrica volcano, COPERE was officially succeeded by ONEMI (Ministry of Interior National Emergency Office)—Chile's modern-day emergency management agency—when it was authorized by law as an independent governmental office by President Salvador Allende.[64][66]

Human sacrifice

In the coastal village Collileufu (

machi, demanded the sacrifice of the grandson of Juan Painecur, a neighbor, in order to calm the earth and the ocean.[67][68] The victim was 5-year-old José Luis Painecur, an "orphan" (huacho) whose mother had gone to work as a domestic worker in Santiago and left her son under the care of his father.[67]

The sacrifice was learned about by authorities after a boy in the commune of Nueva Imperial denounced to local leaders the theft of two horses; these were allegedly eaten during the sacrifice ritual.[67] Two men were charged with the crime of murder and confessed, but later recanted. They were released from prison after two years. A judge ruled that those involved had "acted without free will, driven by an irresistible natural force of ancestral tradition". The story was mentioned in a Time magazine article, although with little detail.[69]

Previous and subsequent earthquakes

An earthquake of similar magnitude occurred in this area around 1800 BC, as has been determined by dating charcoal and shells washed into the Atacama Desert by the tsunami. This apparently caused the hunter-gatherers of the area to stop living near the coast for the next thousand years or so.[70][71]

There is evidence that a similar

Mariño de Lobera, corregidor of Valdivia in 1575, a landslide blocked the outflow of the lagoon of Renigua. Several months later in April, it caused a flood.[73] He said that the Spanish settlers had evacuated and waited on high ground until after the dam burst, but many aboriginals died in the flood waters.[73] While the 1575 earthquake is considered the one most similar to that of 1960, it differed in not having caused any tsunami in Japan.[74][13]

Other lesser earthquakes that preceded the 1960 event occurred in 1737 and 1837.[75]

On 27 February 2010 at 03:34 local time, an 8.8 magnitude earthquake occurred just to the north (off the coast of the Maule region of Chile, between Concepción and Santiago).[76] This quake was reported to be centered approximately 35 kilometres (22 mi) deep and several miles off shore. It may have been related or consequential to the 1960 Valdivia quake, the strongest as recorded using modern technology.[77] This 2010 earthquake was the largest to affect Valdivia since the 1960 event. Thirty five houses were severely damaged and some 44 other suffered reparable damage.[78] A survey showed that 434 persons in Valdivia had their homes damaged by the earthquake. The damages were to areas of poor soil quality, chiefly former wetlands and artificial fills. Some sidewalks near the river shore in Valdivia cracked and collapsed much like in the 1960 earthquake. Overall the 2010 damages in Valdivia were few and highly localized.[78]

See also

References

  1. ^ (PDF) from the original on 9 January 2016, retrieved 21 March 2016
  2. ^ "Significant Earthquake Database". U.S. Geological Survey. Archived from the original on 5 January 2017. Retrieved 19 September 2016.
  3. ^ "M 9.5 - 1960 Great Chilean Earthquake (Valdivia Earthquake)-USGS". USGS ShakeMap. Retrieved 21 September 2023.
  4. ^ "M 9.5 - 1960 Great Chilean Earthquake (Valdivia Earthquake)-USGS". USGS ShakeMap. Retrieved 21 September 2023.
  5. ^ a b USGS (4 September 2009), PAGER-CAT Earthquake Catalog, Version 2008_06.1, United States Geological Survey, archived from the original on 13 March 2020
  6. ^ Video: Cataclysm. Volcano, Tidal Waves, Devastate Pacific Area, 1960/05/27 (1960). Universal Newsreel. 1960. Archived from the original on 28 April 2013. Retrieved 22 February 2012.
  7. ^ "The Largest Earthquake in the World – Articles". U.S. Geological Survey. Archived from the original on 7 January 2007. Retrieved 11 January 2007.
  8. ^ 1634–1699: McCusker, J. J. (1997). How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States: Addenda et Corrigenda (PDF). American Antiquarian Society. 1700–1799: McCusker, J. J. (1992). How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States (PDF). American Antiquarian Society. 1800–present: Federal Reserve Bank of Minneapolis. "Consumer Price Index (estimate) 1800–". Retrieved 29 February 2024.
  9. . Retrieved 9 July 2022.
  10. from the original on 26 April 2023. Retrieved 25 August 2022.
  11. (PDF) from the original on 10 June 2016. Retrieved 20 April 2016.
  12. .
  13. ^ from the original on 3 November 2020. Retrieved 30 August 2020.
  14. .
  15. ^ Reyes Herrera, Sonia E.; Rodríguez Torrent, Juan Carlos; Medina Hernández, Patricio (2014). "El sufrimiento colectivo de una ciudad minera en declinación. El caso de Lota, Chile". Horizontes Antropológicos (in Spanish). 20 (42). Archived from the original on 3 May 2019. Retrieved 9 February 2017.
  16. ^ Barría, Sandra (1 February 2005). "El domingo en que Valdivia sufrió el terremoto más violento del mundo". La Tercera. Archived from the original on 11 March 2008. Retrieved 18 July 2012.
  17. ^ "Chile | Terremoto de Valdivia: cómo fue el poderoso sismo de 1960, el mayor registrado de la historia – Vivienda al Día". infoinvi.uchilefau.cl. Archived from the original on 26 June 2022. Retrieved 26 April 2023.
  18. ^ "A 60 años del terremoto de 1960 | Deutsche Wochenzeitung Cóndor in Chile" (in Spanish). Archived from the original on 27 March 2023. Retrieved 26 April 2023.
  19. ^ from the original on 5 May 2015. Retrieved 15 March 2013.
  20. ^ a b c d e Astroza I., M.; Lazo H., R. (2010). Estudio de los daños de los terremotos del 21 y 22 de mayo de 1960. Congreso chileno de sismología e ingeniería antisísmica. X jornadas (in Spanish). Archived from the original on 5 November 2021. Retrieved 10 May 2017.
  21. ^ Navarrete & Carrillo 2020, p. 85.
  22. ^ (PDF) from the original on 18 July 2018. Retrieved 29 March 2019.
  23. ^ "Tsunami Monitoring in Hong Kong". www.weather.gov.hk. Archived from the original on 14 January 2013. Retrieved 1 February 2018.
  24. . p. 49
  25. ^ .
  26. ^ Olivares Reyes et al. 2022, p. 78.
  27. ^ Jaramillo & Basso 2013, pp. 61–63.
  28. ^ a b Navarrete & Carrillo 2020, p. 78.
  29. ^ Jaramillo & Basso 2013, pp. 64.
  30. S2CID 32393448
    .
  31. .
  32. ^ a b Rojas Hoppe 2010, p. 67.
  33. ^ Villarosa, G.; et al. (2009). "Origen del tsunami de 1960 en el Lago Nahuel Huapi, Patagonia: Aplicación de técnicas batimétricas y sísmicas de alta resolución". Revista de la Asociación Geológica Argentina. 65: 593–597.
  34. ^ a b c Urrutia & Lanza 1993, p. 294.
  35. ^ a b "El "Riñihuazo" y su lucha contra la naturaleza", Diario Austral (in Spanish), 22 May 2010, archived from the original on 2 December 2013, retrieved 10 August 2013
  36. ^ a b Pallardy, Richard (17 August 2018). "Chile earthquake of 1960". Encyclopaedia Britannica Online. Archived from the original on 15 September 2018. Retrieved 14 September 2018.
  37. ^ .
  38. ^ Petit-Breuilh Sepúlveda 2004, p. 222.
  39. ^ Petit-Breuilh Sepúlveda 2004, p. 224.
  40. ^ Terremoto de Valdivia Archived 2 February 2011 at the Wayback Machine, Icarito.
  41. ^
    UACh
    .
  42. ^ Olivares Reyes et al. 2022, p. 46.
  43. ^ Olivares Reyes et al. 2022, p. 55.
  44. ^ Navarrete & Carrillo 2020, p. 29.
  45. ^ a b López Cárdenas, Patricio. 2009. Las administraciones municipales en la historia de Valdivia. pp. 62–65.
  46. ^ Navarrete & Carrillo 2020, p. 83.
  47. ^ Olivares Reyes et al. 2022, p. 52.
  48. ^ Rojas, C. "Genesis y manifestación de las inundaciones en el sur de Chile" Archived 13 November 2013 at the Wayback Machine, Observatorio Geográfico de América Latina.
  49. ^ "The Ecological Approach to the Conservation of Plants in Botanic Gardens - The Experience of the Botanic Garden in Valdivia, Chile". BGCI. June 1998. Archived from the original on 25 April 2014. Retrieved 7 July 2014.
  50. .
  51. ^ Rojas Hoppe 2010, p. 68.
  52. ^ Wolfgang (1960), Contribuciones al estudio de las transformaciones geográficas en la parte septentrional del sur de Chile por efecto del sismo del 22 de mayo de 1960 (in Spanish), Editorial Universitaria, pp. 95–121
  53. ^ Navarrete & Carrillo 2020, p. 79.
  54. ^ Rojas Hoppe 2010, p. 43.
  55. ^ a b Rytkönen, P. "Fruits of Capitalism: Modernization of Chilean Agriculture, 1950–2000". Lund Studies in Economic History. 31: 132.
  56. ^ a b c Rytkönen, P. "Fruits of Capitalism: Modernization of Chilean Agriculture, 1950–2000". Lund Studies in Economic History. 31: 133.
  57. ^ Rytkönen, P. "Fruits of Capitalism: Modernization of Chilean Agriculture, 1950–2000". Lund Studies in Economic History. 31: 139.
  58. ^ a b c Ramirez, C., E. Carrasco, S. Mariani & N. Palacios. 2006. La desaparición del luchecillo (Egeria densa) del Santuario del Rio Cruces (Valdivia, Chile): una hipótesis plausible. Ciencia & Trabajo, 20: 79-86
  59. ^ a b Navarrete & Carrillo 2020, p. 20.
  60. ^ Schwerter Langenbach, Carolina; Basso Zapata, Ismael (2010). Reconstrucción de la memoria histórica del barrio La Aguadam1906-2010 (in Spanish). Unidad de Comunicaciones Consejo de la Cultura y las Artes Región de Los Ríos. p. 36.
  61. ^ Jaramillo & Basso 2013, pp. 52–57.
  62. Universidad de Concepción
    . pp. 189–203.
  63. ^ Aliaga Armijo, Paula; Sepúlveda Márquez, Cristian (2009). Memorias Bajo Tierra: (Re)construcción de la Memoria Colectiva en torno a la minería del Cárbon en la Comuna de Máfil (1935-2001) (in Spanish). p. 44.
  64. ^ a b "National Strategy for Research, Development and Innovation for a Chile Resilient to Disasters of Natural Origin" (PDF). Transition Observatory on Science, Technology, Innovation and Entrepreneurship.(Ministry of Science, Technology, Knowledge and Innovation). November 2016. Archived (PDF) from the original on 30 June 2022. Retrieved 25 April 2023.
  65. ^ a b "CONSULTATION REPORT ON ECONOMIC AND SOCIAL DEVELOPMENT PLANNING" (PDF). Digital Repository of the Economic Commission for Latin America and the Caribbean. 3 March 1962. Archived (PDF) from the original on 26 April 2023. Retrieved 25 April 2023.
  66. ^ Petit-Breuilh Sepúlveda 2004, p. 238.
  67. ^
    El Diario Austral de Valdivia
    . 23 May 2010.
  68. .
  69. ^ "CHILE: Asking for Calm". Time. 4 July 1960. Archived from the original on 17 March 2010. Retrieved 8 February 2010.
  70. ^ Michael Marshall (16 April 2022). "Ancient Chilean tsunami scared local people away for 1000 years". New Scientist. Archived from the original on 15 April 2022. Retrieved 15 April 2022.
  71. PMID 35385303
    .
  72. ^ Breve Historia de Valdivia. Editorial Francisco de Aguirre. 1971. Archived from the original on 18 February 2007. Retrieved 8 February 2010.
  73. ^ a b Mariño de Lobera, CAPITULO III Archived 19 October 2013 at the Wayback Machine, Reino de Chile.
  74. ^ Watanabe, H. (1998). Comprehensive List of Destructive Tsunamis to Hit the Japanese Islands (in Japanese). Japan: University of Tokyo Press.
  75. (PDF) from the original on 26 November 2015. Retrieved 31 January 2018.
  76. ^ "Tsunami After Deadly Earthquake Hits Chile". 27 February 2010. Archived from the original on 1 March 2010. Retrieved 27 February 2010.
  77. National Geographic News. Archived from the original
    on 27 May 2018.
  78. ^ .

Bibliography

External links