Airport terminal
![]() | This article's lead section contains information that is not included elsewhere in the article. (August 2022) |

An airport terminal is a building at an airport where passengers transfer between ground transportation and the facilities that allow them to board and disembark from an aircraft.
The buildings that provide access to the airplanes (via gates) are typically called concourses. However, the terms "terminal" and "concourse" are sometimes used interchangeably, depending on the configuration of the airport. Smaller airports have one terminal while larger airports have several terminals and/or concourses. At small airports, a single terminal building typically serves all of the functions of a terminal and a concourse. Larger airports might have either one terminal that is connected to multiple concourses or multiple almost independent unit terminals.[1]
By the end of the 20th century airport terminals became symbols of progress and trade, showcasing the aspirations of nations constructing them.[2] The buildings are also characterized by a very rapid pace of redevelopment, much higher than that for structures supporting other modes of transportation, eroding the boundary between the permanent and temporary construction.[3]
Unit terminals
An airport might have multiple separate "unit terminals", in order, for example to separate the international travel from the domestic one, or provide the separate airlines with the ability to offer their own terminals. The unit terminals might use similar design (
Functions
Terminals perform three main functions:[4]
- change of mode of transportation: the flights almost inevitably involve some land travel, so the terminal should facilitate the passengers moving along the prescribed routes and thus contains so called passenger circulation areas;
- processing of the passengers and their luggage that includes ticketing / checking-in of passengers, separating the luggage and returning it back to the passengers, security checks of both passengers and luggage. These functions are performed in the passenger processing spaces;
- grouping/ungrouping of the passengers. The passengers do not arrive at the terminal pre-sorted in batches for the flights and have to be grouped to board a plane. Upon arrival, a reverse process occurs, so the terminal needs the passenger holding place.
Landside and airside
Just like entire airports, the terminals are divided into landside and airside zones. Typically passengers and staff must be checked by airport security, and/or customs/border control before being permitted to enter the airside zone. Conversely, passengers arriving from an international flight must pass through border control and customs to access the landside area.
The landside-airside boundary became the defining element of the terminal architecture.[5] The functions that are performed on the landside, like ticketing and check-in, are relatively stable, while the airside is subject to rapid technological and operational changes.[6] Victor Marquez suggests that the boundary is not really an integral part of the airport functions, but a "socio-technical construct" that has gradually shaped the thinking of architects and planners.[7]
Architectural styles
The passenger terminal is the main opportunity within the airport for architects to express themselves and a key element of the airport design. Brian Edwards compares the architectural role of the terminal in the airport to the one of a mall within a small town.[8]
Historically, airports were built in a variety of
- in the US, Delano and Aldrich);
- South America was following the US pattern, with more Modern in the mix;
- Europe preferred all stripes of Modernism, from Basra Airportwas built to resemble a palace (1937–1938, Wilson and Mason).
The concrete boxes of terminals built in the 1960s and 1970s generally gave way to glass boxes in the 1990s and 2000s, with the best terminals making a vague stab at incorporating ideas of "light" and "air"'. However, some, such as
Early history
The first airfields, built in the early 20th century, did not have passengers and thus did not need the terminals. Large facilities were built, however, to house the fragile and inventive airships of the time protecting them from elements
The first European passenger airports of the
Dedicated passenger buildings started to appear. In Europe, Le Bourget got a new buildings in
Sagebiel's Tempelhof had an appearance of a major
The original Le Bourget design was corrected by Georges Labro in 1936–1937, with the new Modernist single-terminal layout following ideas of not-yet-unfinished Tempelhof (but without covered access to the planes) and Croydon.[21]
New York's
Airbridges
Tempelhof faced a contemporary critique for its
Rail links
The terminal at London South (now known as
Centralized luggage handling

The system for early separation of departing passengers from their luggage (check-in desk) was introduced in the
After Second World War

Some airlines checked in their passengers at downtown terminals, and had their own transportation facilities to the airfield. For example,
Chicago's
When London Stansted Airport's new terminal opened in 1991, it marked a shift in airport terminal design since Norman Foster placed the baggage handling system in the basement in order to create a vast open interior space.[27] Airport architects have followed this model since unobstructed sightlines aid with passenger orientation. In some cases, architects design the terminal's ceiling and flooring with cues that suggest the required directional flow.[28] For instance, at Toronto Pearson's Terminal 1 Moshe Safdie included skylights for wayfinding purposes.
Security
Originally, the airport terminals were secured the same way as the rail stations, with local police guarding against the common crimes, like pickpocketing. The industry-specific crimes were rare, although the first
Layouts

Early airport terminals opened directly onto the
Linear
For larger airports, like Kansas City International Airport, Munich Airport and Charles de Gaulle Airport, allowing many passenger to walk across tarmac becomes unfeasible, so the terminals switch to the "linear" layout, where the planes are located next to an elongated building and passengers use jet bridges to walk on board. The design places limit on the number of gates, as the walkability requirement dictates the total length of the building (including the "spine" concourses) to be less than 1⁄2 mile.[1]
Semicircular
Some airports use a linear structure bent into a semicircular shape, with aircraft parked on the convex side and cars on the other. This design still requires long walks for connecting passengers, but greatly reduces travel times between check-in and the aircraft.
Pier
A pier design uses a small, narrow building with aircraft parked on both sides. One end connects to a ticketing and
Remote pier
Remote pier layout consist of multiple concourses that are connected by automatic
Satellite terminals
A satellite terminal is a round- or star-shaped building detached from other airport buildings, so that aircraft can park around its entire circumference. The first airport to use a satellite terminal was
Transporter terminals

The idea of a large airport using specially-built vehicles to connect passengers to the planes was driven by the desire to reduce time spent by the planes getting to and from the terminal, and dates to 1960s. The bodies of the so-called
Other
A particularly unusual design was employed at Berlin Tegel Airport's Terminal A. Consisting of an hexagonal-shaped ring around a courtyard, five of the outer walls were airside and fitted with jet bridges, while the sixth (forming the entrance), along with the inner courtyard, was landside. Although superficially resembling a satellite design insofar as aircraft could park around most of the structure, it was in fact a self-contained terminal which unlike a satellite did not depend on remote buildings for facilities such as check-in, security controls, arrivals etc.
Especially unique were its exceptionally short walking distances and lack of any central area for security, passport control, arrivals or transfer. Instead, individual check-in counters are located immediately in front of the gate of the flight they serve. Checked-in passengers then entered airside via a short passage situated immediately to the side of the check-in desk, passed (for non-Schengen flights) a single passport control booth (with officers sat in the same area as check-in staff), followed by a single security lane which terminated at the gate's waiting area behind. Pairs of gates shared the same seating area, with small kiosks for duty-free and refreshments making up the only airside commercial offerings. Thus, other than the adjacent gate, passengers could not move around the terminal airside and there was no central waiting lounge and retail area for departures. Individual rooms for arrivals, likewise serving a pair of gates, each contained a single baggage carousel and were alternately situated in between each pair of departure gates on the same level, such that the entrance/exit of each jet bridge lied at the boundary of the two areas. Two or three passport control booths were located close to the end of the jet bridge for arriving passengers (causing passengers to queue into the bridge and plane itself) and passengers left the arrivals area unsegregated from departing passengers into the same landside ring-concourse, emerging next to the check-in desks. This allowed both arriving and departing passengers immediate access to the courtyard on the same level, where short-stay parking and taxi-pickup were located. Vehicles could enter and exit via a road underpass underneath the terminal building entrance.
For flights using jet-bridges and passengers arriving or leaving by private transport, this resulted in extremely short walking distances of just a few tens of metres between vehicles and the plane, with only a slightly longer walk for public transport connections. A downside of this design is a lack of any provision for transfer flights, with passengers only able to transit landside.
Hybrid layouts also exist. San Francisco International Airport and Melbourne Airport use a hybrid pier-semicircular layout and a pier layout for the rest.[clarification needed]
Levels
Chris Blow lists the following standard options of using multiple levels in the airport terminals:[29]
- Side-by-side arrivals and departures on a single level is the simplest option for small airports that do not use the jet bridges;
- Side-by-side arrivals and departures on two levels uses a street-level car traffic at the landside interface, with elevators and lifts bringing the passengers to and from the upper (boarding) level with jet bridges;
- Vertical stacking of arrivals and departures is adopted by the large airports. The departure spaces are located on the upper level, while the arrivals along with all baggage processing are handled at the lower level. This approach typically uses an elevated car approach for departures, so the departing passengers are dropped off at the level of (or above) the boarding gates. Deplaning passengers are guided down to the baggage reclaim area;
- Vertical segregation is used for very high passenger traffic. In this scheme, there is no mixing of departing and arriving passengers at all. While segregation can be horizontal, typical arrangement places the departure circulation onto the upper level, while the arriving passenger flow happens on the lower level (at the end of their route, the departing passengers are guided down to the airplanes).
Common-use facility
A common-use facility or terminal design disallows airlines to have its own proprietary check-in counters, gates and IT systems. Rather, check-in counters and gates can be flexibly reassigned as needed. This is used at
Records
This table below lists the top airport terminals throughout the world with the largest amount of floor area, with usable floor space across multiple stories of at least 400,000 m2 (4,300,000 sq ft).
Name | Country and territory | Place/City | Floor area | Notes |
---|---|---|---|---|
Dubai International Airport Terminal 3
|
![]() |
Dubai | 1,713,000 m2 (18,440,000 sq ft) | Three buildings connected by tunnels |
Guangzhou Baiyun International Airport Terminal 1-2 complex | ![]() |
Guangzhou | 1,561,000 m2 (16,800,000 sq ft) | [32] |
Istanbul Airport | ![]() |
Istanbul | 1,440,000 m2 (15,500,000 sq ft) | World's largest airport terminal under one single roof[33] |
Beijing Capital International Airport Terminal 3 | ![]() |
Beijing | 986,000 m2 (10,610,000 sq ft) | Three buildings connected by train[34] |
King Abdulaziz International Airport Terminal 1 | ![]() |
Jeddah | 810,000 m2 (8,700,000 sq ft) | [35] |
Abu Dhabi International Airport Terminal A
|
![]() |
Abu Dhabi | 780,000 m2 (8,400,000 sq ft) | Opened in November 2023[36] |
Hamad International Airport | ![]() |
Doha | 725,000 m2 (7,800,000 sq ft) | Terminal area formally 600,000m2 before extension[37] |
Beijing Daxing International Airport Terminal | ![]() |
Beijing | 700,000 m2 (7,500,000 sq ft) | [38] |
Shanghai Pudong International Airport Satellite Concourse | ![]() |
Shanghai | 622,000 m2 (6,700,000 sq ft) | World's largest stand-alone satellite terminal[39] |
Hong Kong International Airport Terminal 1 | ![]() |
Chek Lap Kok | 570,000 m2 (6,100,000 sq ft) | [40] |
Suvarnabhumi Airport | ![]() |
Bangkok | 563,000 m2 (6,060,000 sq ft) | [41] |
Kunming Changshui International Airport | ![]() |
Kunming | 548,300 m2 (5,902,000 sq ft) | [42] |
Barcelona Airport Terminal 1
|
![]() |
Barcelona | 544,000 m2 (5,860,000 sq ft) | [43] |
Chongqing Jiangbei International Airport Terminal 3A | ![]() |
Chongqing | 530,000 m2 (5,700,000 sq ft) | [44] |
Indira Gandhi International Airport Terminal 3 | ![]() |
Delhi | 502,000 m2 (5,400,000 sq ft) | [45] |
Incheon International Airport Terminal 1 | ![]() |
Seoul | 496,000 m2 (5,340,000 sq ft) | [46] |
Wuhan Tianhe International Airport Terminal 3 | ![]() |
Wuhan | 495,000 m2 (5,330,000 sq ft) | [47] |
Qingdao Jiaodong International Airport | ![]() |
Qingdao | 478,000 m2 (5,150,000 sq ft) | [48] |
Barajas Airport Terminal 4 main building
|
![]() |
Madrid | 470,000 m2 (5,100,000 sq ft) | [49] |
Shenzhen Bao'an International Airport Terminal 3 | ![]() |
Shenzhen | 459,000 m2 (4,940,000 sq ft) | [50] |
Chhatrapati Shivaji International Airport Terminal 2
|
![]() |
Mumbai | 450,000 m2 (4,800,000 sq ft) | [51] |
Narita International Airport Terminal 1 | ![]() |
Narita | 440,000 m2 (4,700,000 sq ft) | [52] |
Soekarno–Hatta International Airport Terminal 3 | ![]() |
Jakarta | 422,804 m2 (4,551,020 sq ft) | [53] |
Ground transportation
Many small and mid-size airports have a single, two, or three-lane one-way loop road which is used by local private vehicles and buses to drop off and pick up passengers.
A large hub airport often has two grade-separated
See also
References
- ^ a b c d e f g h i Norman J. Ashford, Passenger terminal layout and design at the Encyclopædia Britannica
- ^ Pearman 2004, p. 9.
- ^ Pearman 2004, p. 16.
- ^ Ashford, Mumayiz & Wright 2011, p. 414.
- ^ Marquez 2019, p. 245.
- ^ Marquez 2019, p. 131.
- ^ Marquez 2019, p. 246.
- ^ Edwards 2004.
- ^ Pearman 2004, pp. 66–69.
- ^ "The 10 Worst Airport Terminals Slideshow". Frommers.com. Archived from the original on 2013-01-23. Retrieved 2013-04-09.
- ^ "World's 10 Most Beautiful Airport Terminals Slideshow". Frommers.com. Archived from the original on 2013-01-23. Retrieved 2013-04-09.
- ^ a b c Pearman 2004, p. 35.
- ^ Pearman 2004, p. 28.
- ^ Pearman 2004, p. 38.
- ^ Pearman 2004, p. 42-45.
- ^ Pearman 2004, p. 48.
- ^ Pearman 2004, pp. 53–54.
- ^ Pearman 2004, p. 50.
- ^ Pearman 2004, p. 54.
- ^ a b Pearman 2004, p. 57.
- ^ Pearman 2004, p. 61.
- ^ Pearman 2004, p. 70.
- ^ a b Pearman 2004, p. 58.
- ^ Pearman 2004, p. 66.
- ^ "Service on the ground | Air France - Corporate". corporate.airfrance.com. Archived from the original on 2021-09-13. Retrieved 2021-09-13.
- ^ "Ralph H. Burke – O'Hare@50". Archived from the original on 2022-08-21. Retrieved 2022-07-11.
- ^ Menno Hubregtse, Wayfinding, Consumption, and Air Terminal Design Archived 2022-08-21 at the Wayback Machine (London: Routledge, 2020), 36-38.
- ^ Menno Hubregtse, Wayfinding, Consumption, and Air Terminal Design Archived 2020-10-11 at the Wayback Machine (London: Routledge, 2020), 58-61.
- ^ Blow 2007, p. 7-4.
- ^ "Boston Logan". Airport Wayfinder. 2010. Archived from the original on October 7, 2010. Retrieved October 16, 2010.
- ^ McGraw-Hill Construction | ENR – Next Phase of Baggage Screening Goes In-line, Out ofView Archived 2012-02-01 at the Wayback Machine. Enr.construction.com (2003-12-15). Retrieved on 2013-04-09.
- ^ Li, Zhiwen (31 December 2023). "Baiyun Airport's pier terminals (expansion) put into operation, bringing the world's largest single terminal to reality (白云机场两条指廊升级投运,全球最大单体航站楼诞生)". Yangcheng Evening News. Retrieved 1 January 2024.
- ^ "Construction – İGA". igairport.com. Archived from the original on 1 April 2019. Retrieved 6 April 2019.
- ^ "Terminal 3 Beijing Capital International Airport". Archived from the original on 4 August 2020. Retrieved 18 May 2020.
- ^ "First look of Jeddah's new airport terminal". 14 December 2019. Archived from the original on 4 September 2020. Retrieved 18 May 2020.
- ^ "Abu Dhabi International Airport Midfield Terminal Complex". Archived from the original on 14 August 2020. Retrieved 29 May 2020.
- ^ "New terminal adds 125,000 square meters to Hamad International Airport". HOK. Archived from the original on 6 January 2019. Retrieved 12 November 2022.
- ^ "Beijing Daxing International Airport". Archived from the original on 25 July 2019. Retrieved 18 May 2020.
- ^ "Shanghai Pudong Airport to open 'World's largest Satellite terminal' on September 16". Archived from the original on 8 August 2020. Retrieved 18 May 2020.
- ^ "Hong Kong International Airport". Archived from the original on 8 June 2020. Retrieved 18 May 2020.
- ^ "Suvarnabhumi Airport fact sheet". Archived from the original on 18 March 2008. Retrieved 18 May 2008.
- ^ "Fourth largest airport in China". Archived from the original on 24 April 2020. Retrieved 18 May 2020.
- ^ "Barcelona Airport: The Terminal 1 Building". Archived from the original on 22 September 2020. Retrieved 18 May 2020.
- ^ "Chongqing Jiangbei Airport T3A Terminal's construction completion has been inspected and accepted". Archived from the original on 12 August 2020. Retrieved 18 May 2020.
- ^ "IGIA Master Plan". Archived from the original on 19 August 2010. Retrieved 16 August 2010.
- ^ "Incheon International Airport". Archived from the original on 25 May 2019. Retrieved 18 May 2020.
- ^ "Wuhan Tianhe International Airport". Retrieved 6 November 2023.
- ^ "Qingdao Jiaodong International Airport". Archived from the original on 11 December 2021. Retrieved 11 December 2021.
- ^ "Madrid Barajas International Airport". Archived from the original on 20 September 2020. Retrieved 18 May 2020.
- ^ "An iconic gateway to China with a capacity of 45 million passengers a year". Archived from the original on 5 August 2020. Retrieved 18 May 2020.
- ^ "Chhatrapati Shivaji International Airport". Archived from the original on 20 May 2020. Retrieved 18 May 2020.
- ^ "Ministry of Land, Infrastructure and Transport, Civil Aviation Bureau". Archived from the original on 30 December 2009. Retrieved 3 August 2009.
- ^ "Soekarno-Hatta Terminal 3 Ultimate to Operate in May 2016". en.tempo.co. Archived from the original on 2022-08-21. Retrieved 2020-05-21.
Sources
- Pearman, H. (2004). Airports: A Century of Architecture. Laurence King. ISBN 978-1-85669-356-1. Retrieved 2024-07-27.
- Mironov, Lilia (2020-02-06). Airport Aura: A Spatial History of Airport Infrastructure (PDF). vdf Hochschulverlag AG an der ETH Zürich. ISBN 978-3-7281-3991-7.
- Ashford, N.J.; Mumayiz, S.; Wright, P.H. (2011). Airport Engineering: Planning, Design, and Development of 21st Century Airports. Wiley. ISBN 978-0-470-39855-5. Retrieved 2024-07-30.
- Marquez, V. (2019). Landside | Airside: Why Airports Are the Way They Are. Springer Nature Singapore. ISBN 978-981-13-3362-0. Retrieved 2024-07-30.
- Edwards, B. (2004). The Modern Airport Terminal: New Approaches to Airport Architecture. Taylor & Francis. ISBN 978-1-134-53763-1. Retrieved 2024-07-30.
- Blow, Chris (2007). "Terminals and transport interchanges". In Adler, D. (ed.). Metric Handbook (PDF). Taylor & Francis. ISBN 978-1-136-37812-6. Retrieved 2024-07-30.
External links
Media related to Airport terminals at Wikimedia Commons