Chemical waste

Source: Wikipedia, the free encyclopedia.

Chemical waste is any excess, unused, or unwanted

corrosivity, reactivity, and toxicity. This information, along with chemical disposal requirements, is typically available on a chemical's Safety Data Sheet (SDS). Radioactive and biohazardous wastes
require additional or different methods of handling and disposal, and are often regulated differently than standard hazardous wastes.

Laboratory chemical waste in the US

The

U.S. Environmental Protection Agency (EPA) prohibits disposing of certain materials down drains.[4] Therefore, when hazardous chemical waste is generated in a laboratory setting, it is usually stored on-site in appropriate waste containers, such as triple-rinsed chemical storage containers[5] or carboys, where it is later collected and disposed of in order to meet safety, health, and legislative requirements. Many universities' Environment, Health, and Safety (EHS) divisions/departments serve this collection and oversight role.[6][7][8][9]

Organic solvents and other organic waste is typically incinerated.[10][11][12][13] Some chemical wastes are recycled, such as waste elemental mercury.[14]

Laboratory waste containment

Laboratory waste containers

Packaging

During packaging, chemical liquid waste containers are filled to no further than 75% capacity to allow for vapor expansion and to reduce potential spills which can occur from transporting or moving overfilled containers. Containers for chemical liquid waste are typically constructed from materials compatible with the hazardous waste being stored, such as inert materials like polypropylene (PP) or polytetrafluoroethylene (PTFE). These containers are also constructed of mechanically robust materials in order to minimize leakage during storage or transit.

In addition to the general packaging requirements mentioned above, precipitates, solids, and other non-fluid wastes are typically stored separately from liquid waste. Chemically contaminated glassware is disposed of separately from other chemical waste in containers that cannot be punctured by broken glass.[15][16]

Labelling

Containers may be labelled with the group name from a list of chemical waste categories, along with an itemized list of the contents. All chemicals or materials contaminated by chemicals pose a significant hazard, and as such regulations require that the identity of the chemicals in a waste container is obvious.[17]

Storage

Chemical waste containers are kept closed to prevent spillage, except for when waste is being added. Suitable containers are labeled in order to inform disposal specialists of the contents, as well as to prevent addition of incompatible chemicals.

acids and bases
.

Chemical compatibility guidelines

Many chemicals react adversely when combined. Incompatible chemicals are therefore stored in separate areas of laboratories.[18][19]

Acids are separated from

phosphides
, etc. Toxic gases are also produced.

Oxidizers are separated from acids, organic materials, metals,

toxic compounds can be created. Oxidizers also increase the likelihood that any flammable material present will ignite, seen most readily in research laboratories with improper storage of organic solvents.[20]

Environmental pollution

Pharmaceuticals

Pharmaceuticals comprise one of the few groups of chemicals that are specifically designed to act on living cells. They present a special risk when they persist in the environment.

With the exception of watercourses downstream of

sewage treatment plants, the concentration of pharmaceuticals in surface and ground water is generally low. Concentrations in sewage sludge and in landfill leachate may be substantially higher[21]
and provide alternative routes for EPPPs to enter the human and animal food-chain.

However, even at very low environmental concentrations (often ug/L or ng/L), the chronic exposure to environmental pharmaceuticals chemicals can add to the effects of other chemicals in the cocktail is still not studied. The different chemicals might be potentiating synergistic effects (higher than additive effects). An extremely sensitive group in this respect are foetuses.

EPPPs are already found in water all over the world. The diffuse exposure might contribute to

  • extinction of species and imbalance of sensible ecosystems, as many EPPPs affect the reproductive systems of for example frogs, mussels, and fish;[22]
  • genetic, developmental, immune and hormonal health effects to humans and other species, in the same way as e.g. oestrogen-like chemicals;[medical citation needed]
  • development of microbes resistant to antibiotics, as is found in India.[23]

PPCPs

River pollution

In 2022, the most comprehensive study of pharmaceutical pollution of the world's rivers finds that it threatens "environmental and/or human health in more than a quarter of the studied locations". It investigated 1,052 sampling sites along 258 rivers in 104 countries, representing the river pollution of 470 million people. It found that "the most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing" and lists the most frequently detected and concentrated pharmaceuticals.[27][28]
Pharmaceutical pollution of the world's rivers by chemical and region

Textile industry

better source needed
]

The textile industry is one of the largest polluters in the globalized world of mostly free market dominated socioeconomic systems.[citation needed] Chemically polluted textile wastewater degrades the quality of the soil and water.[29] The pollution comes from the type of conduct of chemical treatments used e.g., in pretreatment, dyeing, printing, and finishing operations[30] that many or most market-driven companies use despite "eco-friendly alternatives". Textile industry wastewater is considered to be one the largest polluters of water and soil ecosystems, causing "carcinogenic, mutagenic, genotoxic, cytotoxic and allergenic threats to living organisms".[31][32] The textile industry uses over 8000 chemicals in its supply chain,[33] also polluting the environment with large amounts of microplastics[34] and has been identified in one review as the industry sector producing the largest amount of pollution.[35]

A campaign of big clothing brands like Nike, Adidas and Puma to voluntarily reform their manufacturing supply chains to commit to achieving zero discharges of hazardous chemicals by 2020 (global goal)[36][37] appears to have failed.

The textile industry also creates a lot of pollution that leads to externalities which can cause large economic problems. The problem usually occurs when there is no division of ownership rights. This means that the problem of pollution is largely caused because of incomplete information about which company pollutes and at what scale the damage was caused by the pollution.

Planetary boundary

A study by "Scienmag" defines a '

planetary boundary' for novel entities such as plastic and chemical pollution. The study reported that the boundary has been crossed.[38][39][40][41]

Regulation of chemical waste

Chemicals waste may fall under regulations such as

Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA), as well as state and local regulations, also regulate chemical use and disposal.[42]

Chemical waste in Canadian aquaculture

Chemical waste in oceans is becoming a major issue for marine life. There have been many studies conducted to try and prove the effects of chemicals in oceans.[43] In Canada, many of the studies concentrated on the Atlantic provinces, where fishing and aquaculture are an important part of the economy. In New Brunswick, a study was done on sea urchins in an attempt to identify the effects of toxic and chemical waste on life beneath the ocean, specifically the waste from salmon farms. Sea urchins were used to check the levels of metals in the environment. Green sea urchins have been used as they are widely distributed, abundant in many locations, and easily accessible. By investigating the concentrations of metals in the green sea urchins, the impacts of chemicals from salmon aquaculture activity could be assessed and detected. Samples were taken at 25-meter intervals along a transect in the direction of the main tidal flow. The study found that there were impacts to at least 75 meters based on the intestine metal concentrations.

See also

References

  1. ^ "Chemical Waste−an overview". Science Direct. Elsevier. Retrieved 2021-07-06.
  2. ^ US EPA, OLEM (2015-07-23). "Hazardous Waste". www.epa.gov. Retrieved 2022-08-29.
  3. ^ US EPA, OLEM (2015-11-25). "Household Hazardous Waste (HHW)". www.epa.gov. Retrieved 2022-08-29.
  4. ^ "Chemicals and Toxics Topics". www.epa.gov. 2016-11-17. Retrieved 2022-08-29.
  5. ^ Hyman, William Albert; Vary, Donald (1999). Best Management Practices for Environmental Issues Related to Highway and Street Maintenance. p. 98.
  6. ^ "Chemical Waste Management Guide | Environmental Health & Safety". www.bu.edu. Retrieved 2022-08-29.
  7. ^ "Hazardous Waste Pick-Ups". Environment, Health & Safety. 2016-11-23. Retrieved 2022-08-29.
  8. ^ "Exploring Whether Chemical Management Services are a Potential Mechanism to Facilitate the Reduction, Reuse and Recycling of Chemicals in Educational Institutions" (PDF). EPA Archive document. August 29, 2022.
  9. S2CID 238922945
    .
  10. ^ "New hazardous waste incinerator comes online". cen.acs.org. Retrieved 2022-08-29.
  11. ^ "Hazardous Waste Management Facilities and Units". www.epa.gov. 2015-07-29. Retrieved 2022-08-29.
  12. PMID 17432330
    .
  13. ^ "Waste incineration". Summaries of EU Legislation. Luxembourg: European Union. Retrieved 10 March 2016.
  14. ^ pubs.usgs.gov/circ/c1196u/Circ_1196_U.pdf
  15. ^ a b "Laboratory Waste Disposal" (PDF). University of Wisconsin. 2007.
  16. ^ "General Requirements". Environmental Health and Safety. University of Toronto. Retrieved 2016-02-19.
  17. .
  18. ^ "Chemical Storage Resources". American Chemical Society. Retrieved 2022-08-29.
  19. ^ "Chemical Compatibility and Segregation Guides". Waste Disposal. National Institutes of Health (US). Retrieved 2016-02-12.
  20. ^ "How to Store and Dispose of Hazardous Chemical Waste". Research Safety. University of California at San Diego. Retrieved 2016-02-12.
  21. S2CID 245807710
    .
  22. .
  23. .
  24. .
  25. ^ EU project report summary "Pharmaceutical Input and Elimination from Local Sources", 2012
  26. ^ "Pharmaceuticals and Personal Care Products". Washington, D.C.: U.S. Environmental Protection Agency (EPA). 2012. Archived from the original on 2015-09-24. Retrieved 2015-07-23.
  27. ^ "Pharmaceuticals in rivers threaten world health - study". BBC News. 15 February 2022. Retrieved 10 March 2022.
  28. PMID 35165193
    .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. ^ "Destination Zero: seven years of Detoxing the clothing industry" (PDF). Greenpeace. Retrieved 30 September 2020.
  37. ^ "Greenpeace Calls Out Nike, Adidas and Puma for Toxic Clothing". Reuters. 9 August 2011. Retrieved 30 September 2020.
  38. ^ "Chemical pollution has passed safe limit for humanity, say scientists". The Guardian. 18 January 2022. Retrieved 12 February 2022.
  39. ^ "Safe planetary boundary for pollutants, including plastics, exceeded,". SCIENMAG: Latest Science and Health News. 2022-01-18. Retrieved 2023-06-11.
  40. PMID 35038861
    .
  41. ^ "Procedures for Laboratory Chemical Waste Disposal" (PDF). St. John's, NL: Memorial University of Newfoundland. Retrieved 10 March 2016.
  42. ^ Hallam, Bill (April–May 2010). "Techniques for Efficient Hazardous Chemicals Handling and Disposal". Pollution Equipment News. p. 13. Archived from the original on 8 May 2013. Retrieved 10 March 2016.
  43. ISSN 0025-326X
    .

Further reading

External links