Outline of physics

Source: Wikipedia, the free encyclopedia.

The following outline is provided as an overview of and topical guide to physics:

motion through spacetime, along with related concepts such as energy and force.[2] More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.[3][4][5]

What type of subject is physics?

Physics can be described as all of the following:

Branches

  • Astronomy – studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).
    • Astrodynamics – application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft
      .
    • Astrometry – the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies.
    • Astrophysics – the study of the physical aspects of celestial objects
    • Celestial mechanics - the branch of theoretical astronomy that deals with the calculation of the motions of celestial objects such as planets.
    • Extragalactic astronomy – the branch of astronomy concerned with objects outside our own Milky Way Galaxy
    • Galactic astronomy – the study of our own Milky Way galaxy and all its contents.
    • Physical cosmology – the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution.
    • Planetary science – the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them.
    • Stellar astronomy – natural science that deals with the study of celestial objects (such as stars, planets, comets, nebulae, star clusters, and galaxies) and phenomena that originate outside the atmosphere of Earth (such as cosmic background radiation)
  • Atmospheric physics – the study of the application of physics to the atmosphere
  • Atomic, molecular, and optical physics – the study of how matter and light interact
    • Optics – the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.
  • Biophysics – interdisciplinary science that uses the methods of physics to study biological systems
    • Neurophysics – branch of biophysics dealing with the nervous system.
    • Polymer physics – field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation and polymerization of polymers and monomers respectively.
    • Quantum biology - application of quantum mechanics to biological phenomenon.
  • Chemical physics – the branch of physics that studies chemical processes from physics.
  • Computational physics – study and implementation of numerical algorithms to solve problems in physics for which a quantitative theory already exists.
  • Condensed matter physics – the study of the physical properties of condensed phases of matter.
  • Electricity – the study of electrical phenomena.
  • Electromagnetism – branch of science concerned with the forces that occur between electrically charged particles.
  • Geophysics – the physics of the Earth and its environment in space; also the study of the Earth using quantitative physical methods
  • Magnetism – the study of physical phenomena that are mediated by magnetic field.
  • Mathematical physics – application of mathematics to problems in physics and the development of mathematical methods for such applications and the formulation of physical theories.
  • Mechanics – the branch of physics concerned with the behavior of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment.
    • air
      .
    • Biomechanics – the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells using the methods of mechanics.
    • Classical mechanics – one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces.
      • motion of points, bodies (objects) and systems of bodies (groups of objects) without consideration of the causes of motion.[6][7][8]
    • Continuum mechanics – the branch of mechanics that deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles.
    • Dynamics
      – the study of the causes of motion and changes in motion
    • Fluid mechanics – the study of fluids and the forces on them.
      • Fluid statics
        – study of fluids at rest
      • Fluid kinematics – study of fluids in motion
      • Fluid dynamics – study of the effect of forces on fluid motion
    • Statics – the branch of mechanics concerned with the analysis of loads (force, torque/moment) on physical systems in static equilibrium, that is, in a state where the relative positions of subsystems do not vary over time, or where components and structures are at a constant velocity.
  • Medical Physics – the branch of physics that deals with the application of physics in medicine - such as imaging exams (NMR, PET scans, and so on), radiotherapy and nuclear medicine
    .
  • Statistical mechanics – the branch of physics which studies any physical system that has a large number of degrees of freedom.
  • Thermodynamics – the branch of physical science concerned with heat and its relation to other forms of energy and work.
  • Nuclear physics – field of physics that studies the building blocks and interactions of atomic nuclei.
  • Particle physics – the branch of physics that studies the properties and interactions of the fundamental constituents of matter and energy.
  • Psychophysics – quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they affect.
  • Plasma physics
    – the study of plasma, a state of matter similar to gas in which a certain portion of the particles are ionized.
  • Quantum physics
    – branch of physics dealing with physical phenomena where the action is on the order of the Planck constant.
    • Quantum field theory - the application of quantum theory to the study of fields (systems with infinite degrees of freedom).
    • Quantum information theory - the study of the information-processing capabilities afforded by quantum mechanics.
    • Quantum foundations - the discipline focussing in understanding the counterintuitive aspects of the theory, including trying to find physical principles underlying them, and proposing generalisations of quantum theory.
  • Quantum gravity - the search for an account of gravitation fully compatible with quantum theory.
  • Relativity – theory of physics which describes the relationship between space and time.
    • General Relativity
      - a geometric, non-quantum theory of gravitation.
    • Special Relativity
      - a theory that describes the propagation of matter and light at high speeds.
  • Other
    • agroecosystems
      • Soil physics – the study of soil physical properties and processes.
    • Cryogenics – cryogenics is the study of the production of very low temperature (below −150 °C, −238 °F or 123K) and the behavior of materials at those temperatures.
    • Econophysics – interdisciplinary research field, applying theories and methods originally developed by physicists to solve problems in economics
    • Materials physics
      – use of physics to describe materials in many different ways such as force, heat, light, and mechanics.
    • Vehicle dynamics – dynamics of vehicles, here assumed to be ground vehicles.
  • Philosophy of physics - deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists.

History

History of physics – history of the physical science that studies matter and its motion through space-time, and related concepts such as energy and force

  • History of acoustics
    – history of the study of mechanical waves in solids, liquids, and gases (such as vibration and sound)
  • agroecosystems
  • History of astrophysics
    – history of the study of the physical aspects of celestial objects
  • History of astronomy – history of the studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).
    • History of astrodynamics
      – history of the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft.
    • History of astrometry
      – history of the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies.
    • History of cosmology
      – history of the discipline that deals with the nature of the Universe as a whole.
    • History of the Big Bang theory - origin of the universe
    • History of physical cosmology
      – history of the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution.
    • History of planetary science
      – history of the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them.
    • History of stellar astronomy – history of the natural science that deals with the study of celestial objects (such as stars, planets, comets, nebulae, star clusters and galaxies) and phenomena that originate outside the atmosphere of Earth (such as cosmic background radiation)
  • History of atomic, molecular, and optical physics
    – history of the study of how matter and light interact
  • History of biophysics
    – history of the study of physical processes relating to biology
  • History of condensed matter physics
    – history of the study of the physical properties of condensed phases of matter.
  • History of econophysics
    – history of the interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics
  • History of electromagnetism
    – history of the branch of science concerned with the forces that occur between electrically charged particles.
  • History of geophysics – history of the physics of the Earth and its environment in space; also the study of the Earth using quantitative physical methods
  • History of gravitational theory - the earliest physics theory with application in daily life through cosmology
  • History of mechanics
    – history of the branch of physics concerned with the behavior of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment.
    • History of biomechanics
      – history of the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells by means of the methods of mechanics.
    • History of classical mechanics – history of the one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces.
    • History of variational principles in physics - mathematical basis of classical and quantum mechanics.
    • History of fluid mechanics – history of the study of fluids and the forces on them.
    • History of quantum mechanics – history of the branch of physics dealing with physical phenomena where the action is on the order of the Planck constant.
    • History of quantum field theory – modern branch of quantum theory.
    • History of string theory - branch of mathematics driven by open questions in quantum physics
    • History of thermodynamics – history of the branch of physical science concerned with heat and its relation to other forms of energy and work.
  • History of nuclear physics
    – history of the field of physics that studies the building blocks and interactions of atomic nuclei.
  • History of nuclear fusion - mechanism powering stars and modern weapons of mass destruction.
  • History of electromagnetism
    - electricity, magnets, and light from radio waves to gamma rays
  • History of materials science - From stones to silicon, understanding and manipulating matter.
  • History of optics – history of the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.
  • History of spectroscopy - measuring the response of materials to energy dependent probes of light and matter.
  • History of subatomic physics – history of the branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation.
  • History of the periodic table - Tabular summary of the relationship between elements.
  • History of psychophysics
    – history of the quantitative investigations of the relationship between physical stimuli and the sensations and perceptions they affect.
  • History of special relativity - history of the study of the relationship between space and time in the absence of gravity
  • History of general relativity - history of the non-quantum theory of gravity
  • History of solid-state physics
    – history of the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy.
  • History of Solar System formation and evolution hypotheses long enough to explain itself
  • History of superconductivity - Ultra-cold state of matter.

General concepts

Basic principles

Physics – branch of science that studies

fundamental sciences
" because the other natural sciences (like biology, geology etc.) deal with systems that seem to obey the laws of physics. According to physics, the physical laws of matter, energy and the fundamental forces of nature govern the interactions between particles and physical entities (such as planets, molecules, atoms or the subatomic particles). Some of the basic pursuits of physics, which include some of the most prominent developments in modern science in the last millennium, include:

physical experiment

Theoretical concepts:

fundamental force, physical constant

Fundamental concepts

Measurement

Motion

Overview

This is a list of the primary theories in physics, major subtopics, and concepts.

Note: the Theory column below contains links to articles with infoboxes at the top of their respective pages which list the major concepts.
Theory Major subtopics Concepts
Classical mechanics
work, power
Electromagnetism
magnetic permeability
Theory of relativity Special relativity, general relativity, Einstein field equations
Thermodynamics and statistical mechanics Heat engine, kinetic theory
Quantum mechanics
Heisenberg uncertainty principle

Concepts by field

Field Subfields Major theories Concepts
Particle physics
particle physics phenomenology
Standard Model, quantum field theory, quantum chromodynamics, electroweak theory, effective field theory, lattice field theory, lattice gauge theory, gauge theory, supersymmetry, Grand Unified Theory, superstring theory, M-theory
Atomic, molecular, and optical physics Atomic physics, molecular physics, atomic and molecular astrophysics, chemical physics, optics, photonics Quantum optics, quantum chemistry, quantum information science Atom, molecule, diffraction, electromagnetic radiation, laser, polarization, spectral line, Casimir effect
Condensed matter physics
many-body theory
Astrophysics
law of universal gravitation

Lists

Index of physics articles

See also

Notes

  1. .
  2. . Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events.
  3. ^ H.D. Young; R.A. Freedman (2004). University Physics with Modern Physics (11th ed.). Addison Wesley. p. 2. Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns and principles that relate these phenomena. These patterns are called physical theories or, when they are very well established and of broad use, physical laws or principles.
  4. . Physics is the study of your world and the world and universe around you.
  5. philosophical world
    .
  6. ^ .
  7. .
  8. ^ Thomas Wallace Wright (1896). Elements of Mechanics Including Kinematics, Kinetics and Statics. E and FN Spon. Chapter 1.
  9. atomic hypothesis as the single most prolific scientific concept: "If, in some cataclysm, all [] scientific knowledge were to be destroyed [save] one sentence [...] what statement would contain the most information in the fewest words? I believe it is [...] that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another ..." (Feynman, Leighton & Sands 1963
    , p. I-2)
  10. ^ "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." (Maxwell 1878, p. 9)

Works cited

External links