Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of a microsecond. They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays. Mesons are also produced in cyclotrons or other particle accelerators.
Particles have corresponding antiparticles with the same mass but with opposite electric charges. For example, the antiparticle of the electron is the positron. The electron has a negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter. Some particles, such as the photon, are their own antiparticle.
Experimental particle physics is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider. Theoretical particle physics is the study of these particles in the context of cosmology and quantum theory. The two are closely interrelated: the Higgs boson was postulated theoretically before being confirmed by experiments.
observed that a small fraction of the alpha particles experienced strong deflection when being struck by the gold foil.
The idea that all
quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to the development of nuclear weapons. Bethe's 1947 calculation of the Lamb shift is credited with having "opened the way to the modern era of particle physics".[3]
Throughout the 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the "
Val Fitch brought new questions to matter-antimatter imbalance.[4] After the formulation of the Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of quantum field theories. This reclassification marked the beginning of modern particle physics.[5][6]
The current state of the classification of all elementary particles is explained by the
fundamental fermions (12 particles and their associated anti-particles), which are the constituents of all matter.[8] Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson.[9]
The Standard Model, as currently formulated, has 61 elementary particles.
mass have provided the first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model.[11]
exotic particles.[12] All particles and their interactions observed to date can be described almost entirely by the Standard Model.[7]
Dynamics of particles are also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behaviour under certain experimental conditions and wave-like behaviour in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles.[10]
quantum spin of half-integers (−1/2, 1/2, 3/2, etc.). This causes the fermions to obey the Pauli exclusion principle, where no two particles may occupy the same quantum state.[14] Quarks have fractional elementary electric charge (−1/3 or 2/3)[15] and leptons have whole-numbered electric charge (0 or -1).[16] Quarks also have color charge, which is labeled arbitrarily with no correlation to actual light color as red, green and blue.[17] Because the interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement.[17]
There are three known generations of quarks (up and down, strange and charm, top and bottom) and leptons (electron and its neutrino, muon and its neutrino, tau and its neutrino), with strong indirect evidence that a fourth generation of fermions does not exist.[18]
superscript. For example, the electron and the positron are denoted e− and e+ .[26] However, in the case that the particle has a charge of 0 (equal to that of the antiparticle), the antiparticle is denoted with a line above the symbol. As such, an electron neutrino is ν e, whereas its antineutrino is ν e. When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles.[27] Some particles, such as the photon or gluon, have no antiparticles.[citation needed
]
Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue.
A proton consists of two up quarks and one down quark, linked together by gluons. The quarks' color charge are also visible.
The neutrons and protons in the atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark.[29] A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons. Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing the primary colors.[30] More exotic hadrons can have other types, arrangement or number of quarks (tetraquark, pentaquark).[31]
An atom is made from protons, neutrons and electrons.
hydrogen-4.1, which has one of its electrons replaced with a muon.[34]
Hypothetical
The graviton is a hypothetical particle that can mediate the gravitational interaction, but it has not been detected or completely reconciled with current theories.[35] Many other hypothetical particles have been proposed to address the limitations of the Standard Model. Notably, supersymmetric particles aim to solve the hierarchy problem, axions address the strong CP problem, and various other particles are proposed to explain the origins of dark matter and dark energy.
Experimental laboratories
Fermi National Accelerator Laboratory, USA
The world's major particle physics laboratories are:
heavy ions such as gold ions and polarized protons. It is the world's first heavy ion collider, and the world's only polarized proton collider.[36][37]
Budker Institute of Nuclear Physics (Novosibirsk, Russia). Its main projects are now the electron-positron collidersVEPP-2000,[38] operated since 2006, and VEPP-4,[39] started experiments in 1994. Earlier facilities include the first electron–electron beam–beam collider VEP-1, which conducted experiments from 1964 to 1968; the electron-positron colliders VEPP-2, operated from 1965 to 1974; and, its successor VEPP-2M,[40] performed experiments from 1974 to 2000.[41]
CMS detector for LHCCERN (European Organization for Nuclear Research) (Franco-Swiss border, near Geneva, Switzerland). Its main project is now the Large Hadron Collider (LHC), which had its first beam circulation on 10 September 2008, and is now the world's most energetic collider of protons. It also became the most energetic collider of heavy ions after it began colliding lead ions. Earlier facilities include the Large Electron–Positron Collider (LEP), which was stopped on 2 November 2000 and then dismantled to give way for LHC; and the Super Proton Synchrotron, which is being reused as a pre-accelerator for the LHC and for fixed-target experiments.[42]
Linac Coherent Light Source X-ray laser as well as advanced accelerator design research. SLAC staff continue to participate in developing and building many particle detectors around the world.[47]
Theoretical particle physics attempts to develop the models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics). There are several major interrelated efforts being made in theoretical particle physics today.
One important branch attempts to better understand the
Another major effort is in model building where model builders develop ideas for what physics may lie
beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data.[48][49] It may involve work on supersymmetry, alternatives to the Higgs mechanism, extra spatial dimensions (such as the Randall–Sundrum models), Preon theory, combinations of these, or other ideas. Vanishing-dimensions theory is a particle physics theory suggesting that systems with higher energy have a smaller number of dimensions.[50]
A third major effort in theoretical particle physics is
In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce
superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN. Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating a long and growing list of beneficial practical applications with contributions from particle physics.[52]
from the original on 22 April 2022. Retrieved 28 July 2022. Ordinary matter is composed entirely of first-generation particles, namely the u and d quarks, plus the electron and its neutrino.
. ... boson: A force-carrying particle, as opposed to a matter particle (fermion). Bosons can be piled on top of each other without limit. Examples are photons, gluons, gravitons, weak bosons, and the Higgs boson. The spin of a boson is always an integer: 0, 1, 2, and so on ...
^Bernardi, G.; Carena, M.; Junk, T. (2007). "Higgs bosons: Theory and searches"(PDF). Review: Hypothetical particles and Concepts. Particle Data Group. Archived(PDF) from the original on 3 October 2018. Retrieved 28 July 2022.
. Matter conservation means conservation of baryonic number A and leptonic number L, A and L being algebraic numbers. Positive A and L are associated to matter particles, negative A and L are associated to antimatter particles. All known interactions do conserve matter.