Talk:Interstate River Water Disputes Act

Page contents not supported in other languages.
Source: Wikipedia, the free encyclopedia.

 Question: When I search for Indian Water Disputes, I get a lot of hits.  Are any of these related?  Should they be linked?   :- ) DCS 12:58, 26 March 2012 (UTC)[reply]

Answer: India is a tropical country with average annual evaporation rate nearly 1.80 meters water column whereas the average rainfall is less than 0.8 meters water column. The areas which receive less than average rain, face more water shortage as the population density increases and the land resources are made more productive. Water is in shortage and not the land in India for its all round devlopment. — Preceding unsigned comment added by 124.123.206.236 (talk) 06:57, 3 October 2012 (UTC)[reply]

 Question: What would happen to a downstream state if the upstream state is not abiding the Tribunal verdict or the earlier agreements?. Is there any physical counter remedy to the downstream state?

Answer: This has already happened in case of Sutlej river water sharing agreement between Punjab and Haryana in construction of Sutlej and Yamuna link canal. Punjab has not permitted the canal construction in its area and unilaterally refused in 2004 to abide by the earlier water sharing agreement. The constructed portion of the canal in Haryana is idling without serving its purpose. If Haryana is interested in getting its water share from Sutlej river, it can construct the remaining canal via Himachal Predesh area bypassing Punjab area totally by tapping water directly from the Bakra reservoir located in Himachal Predesh.

When an upstream state is refusing to honour the water sharing agreement with a downstream state, the downstream state can create huge storage reservoir by building a dam just inside its state boundary across the river submerging vast area in the upstream state territory. This water reservoir would be utilised by the downstream state for its water needs and flood control. Nowadays, the state of art construction technology permits to construct huge storage reservoirs economically if the cost associated with the land submergence is not an issue as in this case. Kwdt2 (talk) 07:07, 24 November 2012 (UTC)[reply]

Harnessing all river waters in India by off shore fresh water reservoir projects

India can harness all the water presently joining the sea by constructing off shore fresh water reservoirs on its territorial sea area. As the construction of inland based water reservoirs is becoming more and more difficult, substantial water resources exploitation is feasible only by constructing off shore fresh water reservoirs to store the river flood waters and pump water to nearer uplands through out the year with its abundant

Cauvery
inter link scheme.

Offshore fresh water reservoir on Arabian sea along the west coast

Many massive off shore fresh water

Western ghats located in Maharashtra, Karnataka & Kerala. "Spatial variation in water supply and demand across river basins of India" With 500 meters water lifting (maximum), 95% of this water can be pumped and used in all the water deficit rivers of Karnataka, Gujarat, Maharashtra, Tamil Nadu and western Rajasthan (up to Sikar
). Compared to bringing water from Ganga river located thousands of kilo meters away, this option is many times economical as it would supply water to all high lands and low lands of these states fully for three crops in a year.

locks for using the lagoon area for shipping, ship breaking, ship building, etc. purposes. The evaporation and seepage water losses from this man made lagoon would be less than the rainfall on the lagoon area. Maharashtra is contemplating to store fresh water in Mahim Bay for Mumbai city water supply."State revives reclamation plan along Mumbai coast"

There is no need of transferring Ganga river water to

Peninsular India if the water resources available in these states are put to full use with the cooperation of all the states."India’s River-Linking Scheme: A case of troubled waters"

Godavari river after sparing adequate environmental and salt export flows to the sea by transferring to its water deficit river basins by moderate lifts (less than 200 meters).Blue Print for Godavari River Water Utilization in Andhra Pradesh
As such there is no surplus water available to supply outside the basin states from the east flowing peninsular rivers.

Water can also be exported to

Persian gulf. The water available in the Arabian sea coast of India is the nearest Fresh water surplus region to the middle east countries. Cubic meter of Fresh water can be supplied at approximate price of 0.5 US$ which is less than the price of producing sweet water from sea water by energy/electricity intensive desalination process. 200 cubic meters of water can be exchanged for one barrel of crude oil. Nearly 40 bcm surplus waters of Sri Lanka can also be utilised by constructing similar man made lagoon around the coast line of Sri Lanka and interconnecting it with Indian system. Pakistan can also benefit by using some of the available Fresh water in return for allowing the lagoon extension up to strait of Hormuz

Surplus Ganga river water transfer to peninsular rivers via Bay of Bengal sea

The better feasible way of transferring surplus water of Ganga river /

Chambal river and Ganga basin for using in Madhya Pradesh, south Uttar Pradesh, Rajasthan high lands. See Google earth maps for more geographical information. The advantage of this scheme is that Ganga river water can be stored on Bay of Bengal sea area and more than 50 bcm water transferred throughout the year to other river basins at optimum pumping head. "The Encroaching Ganga and Social Conflicts: The Case of West Bengal, India"

creek
of Hoogly river is connected to the fresh water reservoir and the left creek is open to the sea via locks for ships movement. The barrages across the creeks would reduce the transport of sediment in to the creeks / Hoogly river from the open turbid sea due to wave and tidal activity.

Bangladesh to benefit immensely by its river water transfer to peninsular rivers of India

The better feasible way of transferring surplus waters of Ganga and

Panama canal) would be provided for the movement of ships from the open sea to harbours located in Bangladesh and West Bengal in India. See also "Bangladesh, a physically growing country"

The sea dike extending 8 m above the mean sea level and 50 m wide at the top surface, would be nearly 520 km connecting Indian mainland to South east of Bangladesh forming transnational high way and rail route from the Indian subcontinent to East Asia up to Singapore and China. This off shore dike would protect the Bangladesh from the wave and tidal activity during the frequent cyclones /floods preventing human & property losses drastically.

Nearly 1000 million tons of sediment from Ganga and Brahmaputra rivers is settling in the sea coast of Bangladesh and the sea area is shallow (up to 12 m ) for at least 50 km wide. Bangladesh plagued with high population density, can reclaim nearly 6,000 sq. km (4% of its total land) area of sea by excavating/dredging sediment from the fresh water reservoir bed without effecting the water storage of the off-shore fresh water reservoir. Presence of the protective sea dike, makes sub sea soil dredging more easier and economical by warding from rough sea waves. This reclaimed area from the sea, can be advantageously utilised for locating a megacity with international standards to cater to the modern needs of Bangladesh.

As explained another 200 bcm water (in addition to 50 bcm via Hoogly river in India) of entire Ganga and Brahmaputra rivers can be diverted to the peninsular rivers of India with the consent of Bangladesh. The minimum water flow from

cumecs
which is equal to 220 bcm annually. This water can also be put to use in addition to the impounded water by the water reservoir.

Off shore fresh water reservoir to store Krishna river water for irrigation, etc requirements.

Presently, the rain water in the catchment area below the

msl high, would also drastically reduce the cyclone damages and reduce drastically flooding in Chirala, Bapatla and Nizampatnam coastal areas. It would also greatly improve the irrigated coastal lands drainage in Guntur and Prakasam
districts. The sea dike can also serve as an access way to a major deep sea port which can be located on the deep sea side of the 70 km long dike.

Vast lands in coastal districts of

Pulicat lake can be brought under irrigation by gravity canals. The total cost would be less than Rs 200 billions which is nearly Rs 1,00,000 per acre of irrigated land.49.207.221.221 (talk) 16:24, 14 April 2015 (UTC)[reply
]

Gigantic multinational water export projects

If we include surplus waters of Ganga and Bramhaputra rivers after meeting total needs of entire India, nearly 700 billion cubic meters water can be exported to Middle East countries.

There are vast deserts in all continents (western part of South America, Northern and south western Africa, Middle East in Asia, South eastern part of USA, Australia, etc.) and also water surplus regions nearer to these deserts. It is technically and economically feasible to construct man made fresh water reservoirs / lagoons on the continental shelf of the sea up to 12 meters depth from the coast line to supply fresh water to desert areas from nearby water surplus/high rainfall areas. Excess water from the high rainfall regions will be collected in the man made lagoons at sea level and this fresh water is pumped to irrigate desert lands from the other end of the lengthy man made lagoons. In other words, the proposal is interconnecting rivers with a sea level / sub sea level contour canal (at least five km wide) to facilitate water transfer.

It is estimated that the construction cost of sea dikes would be of the order of 10 million US$ per kilometre length. The benefits in terms of agriculture production, shipping, road transport, rail transport, etc are enormous and the entire cost would be paid back within a decade. These massive multinational projects would galvanize the stagnating world economy and also create long lasting productive infrastructure. However the negative aspects of these man made lagoons are to be evaluated in detail and proper remedial steps shall be incorporated to minimize the damage to coastal ecosystem by the presence of fresh water lagoon as barrier to the sea.

The following are the possible projects in each continent:

The above gigantic projects would cover most of the desert areas of the world except the high lands of central Asian deserts. Thus most of the lands which are not available for cultivation and forestry can be turned in to habitat to copious greenery which would help to mitigate the global warming process.