Arcturus

Source: Wikipedia, the free encyclopedia.
(Redirected from
Α Boo
)
Arcturus
Arcturus in the constellation of Boötes (circled)
Observation data
Epoch J2000      Equinox J2000
Constellation Boötes
Pronunciation
/ɑːrkˈtjʊərəs/
Right ascension 14h 15m 39.7s[1]
Declination +19° 10′ 56″[1]
Apparent magnitude (V) −0.05[2]
Characteristics
Spectral type K1.5 III Fe−0.5[3]
Apparent magnitude (J) −2.25[2]
U−B color index +1.28[2]
B−V color index +1.23[2]
R−I color index +0.65[2]
Note (category: variability): H and K emission vary.
Distance
36.7 ± 0.2 ly
(11.26 ± 0.07 pc)
Absolute magnitude (MV)−0.30±0.02[6]
Details
Gyr
GCTP
 3242.00
Database references
SIMBADdata
Data sources:

Arcturus is the brightest

apparent visual magnitude of −0.05,[2] it is the fourth-brightest star in the night sky, and the brightest in the northern celestial hemisphere. The name Arcturus originated from ancient Greece; it was then cataloged as α Boötis by Johann Bayer in 1603, which is Latinized to Alpha Boötis. Arcturus forms one corner of the Spring Triangle asterism
.

Located relatively close at 36.7 light-years from the Sun, Arcturus is a red giant of spectral type K1.5III—an aging star around 7.1 billion years old that has used up its core hydrogen and evolved off the main sequence. It is about the same mass as the Sun, but has expanded to 25 times its size and is around 170 times as luminous. Its diameter is 35 million kilometres.

Nomenclature

The traditional name Arcturus is Latinised from the ancient Greek Ἀρκτοῦρος (Arktouros) and means "Guardian of the Bear",[9] ultimately from ἄρκτος (arktos), "bear"[10] and οὖρος (ouros), "watcher, guardian".[11]

The designation of Arcturus as α Boötis (Latinised to Alpha Boötis) was made by Johann Bayer in 1603. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN, which included Arcturus for α Boötis.[12][13]

Observation

Arcturus is the brightest star in the constellation of Boötes.

With an

α Centauri (combined magnitude of −0.27). However, α Centauri AB is a binary star, whose components are each fainter than Arcturus. This makes Arcturus the third-brightest individual star, just ahead of α Centauri A (officially named Rigil Kentaurus), whose apparent magnitude is −0.01.[15] The French mathematician and astronomer Jean-Baptiste Morin observed Arcturus in the daytime with a telescope in 1635. This was the first recorded full daylight viewing for any star other than the Sun and supernovae. Arcturus has been seen at or just before sunset with the naked eye.[15]

Arcturus is visible from both of

northern hemisphere, an easy way to find Arcturus is to follow the arc of the handle of the Big Dipper (or Plough in the UK). By continuing in this path, one can find Spica, "Arc to Arcturus, then spike (or speed on) to Spica".[17][18] Together with the bright stars Spica and Regulus (or Denebola, depending on the source), Arcturus is part of the Spring Triangle asterism. With Cor Caroli, these four stars form the Great Diamond
asterism.

Ptolemy described Arcturus as subrufa ("slightly red"): it has a B-V color index of +1.23, roughly midway between Pollux (B-V +1.00) and Aldebaran (B-V +1.54).[15]

η Boötis, or Muphrid, is only 3.3 light-years distant from Arcturus, and would have a visual magnitude −2.5, about as bright as Jupiter at its brightest from Earth, whereas an observer on the former system would find Arcturus with a magnitude -5.0, slightly brighter than Venus as seen from Earth, but with an orangish color.[15]

Physical characteristics

Optical image of Arcturus (DSS2 / MAST / STScI / NASA)

Based upon an annual

first magnitude star
other than α Centauri.

Arcturus is moving rapidly (122 km/s or 270,000 mph) relative to the Sun, and is now almost at its closest point to the Sun. Closest approach will happen in about 4,000 years, when the star will be a few hundredths of a light-year closer to Earth than it is today. (In antiquity, Arcturus was closer to the centre of the constellation.

Arcturus stream.[20]

With an absolute magnitude of −0.30, Arcturus is, together with Vega and Sirius, one of the most luminous stars in the Sun's neighborhood. It is about 110 times brighter than the Sun in visible light wavelengths, but this underestimates its strength as much of the light it gives off is in the infrared; total (bolometric) power output is about 180 times that of the Sun. With a near-infrared J band magnitude of −2.2, only Betelgeuse (−2.9) and R Doradus (−2.6) are brighter. The lower output in visible light is due to a lower efficacy as the star has a lower surface temperature than the Sun.

There have been suggestions that Arcturus might be a member of a binary system with a faint, cool companion, but no companion has been directly detected.[7] In the absence of a binary companion, the mass of Arcturus cannot be measured directly, but models suggest it is slightly greater than that of the Sun. Evolutionary matching to the observed physical parameters gives a mass of 1.08±0.06 M,[7] while the oxygen isotope ratio for a first dredge-up star gives a mass of 1.2 M.[21] Given the star's evolutionary state, it is expected to have undergone significant mass loss in the past.[22] The star displays magnetic activity that is heating the coronal structures, and it undergoes a solar-type magnetic cycle with a duration that is probably less than 14 years. A weak magnetic field has been detected in the photosphere with a strength of around half a gauss. The magnetic activity appears to lie along four latitudes and is rotationally modulated.[23]

Arcturus is estimated to be around 6 to 8.5 billion years old,[7] but there is some uncertainty about its evolutionary status.[24] Based upon the color characteristics of Arcturus, it is currently ascending the red-giant branch and will continue to do so until it accumulates a large enough degenerate helium core to ignite the helium flash.[7] It has likely exhausted the hydrogen from its core and is now in its active hydrogen shell burning phase. However, Charbonnel et al. (1998) placed it slightly above the horizontal branch, and suggested it has already completed the helium flash stage.[24]

Beta Ursae Majoris, Pollux
, and Arcturus.

Spectrum

Arcturus has

K-type stellar classification. It is frequently assigned the spectral type of K0III,[25] but in 1989 was used as the spectral standard for type K1.5III Fe−0.5,[3] with the suffix notation indicating a mild underabundance of iron compared to typical stars of its type. As the brightest K-type giant in the sky, it has been the subject of multiple atlases with coverage from the ultraviolet to infrared.[26][27]

The spectrum shows a dramatic transition from

absorption lines in the visible range and molecular absorption lines in the infrared. This is due to the optical depth of the atmosphere varying with wavelength.[27] The spectrum shows very strong absorption in some molecular lines that are not produced in the photosphere but in a surrounding shell.[28] Examination of carbon monoxide lines show the molecular component of the atmosphere extending outward to 2–3 times the radius of the star, with the chromospheric wind steeply accelerating to 35–40 km/s in this region.[29]

Astronomers term "metals" those elements with higher

Oscillations

As one of the brightest stars in the sky, Arcturus has been the subject of a number of studies in the emerging field of

microhertz (μHz), the highest peak corresponding to 4.3 μHz (2.7 days) with an amplitude of 60 ms−1, with a frequency separation of c. 5 μHz. They suggested that the most plausible explanation for the variability of Arcturus is stellar oscillations.[30]

Asteroseismological measurements allow direct calculation of the mass and radius, giving values of 0.8±0.2 M and 27.9±3.4 R. This form of modelling is still relatively inaccurate, but a useful check on other models.[31]

Possible planetary system

Hipparcos satellite astrometry suggested that Arcturus is a binary star, with the companion about twenty times dimmer than the primary and orbiting close enough to be at the very limits of humans' current ability to make it out. Recent results remain inconclusive, but do support the marginal Hipparcos detection of a binary companion.[32]

In 1993, radial velocity measurements of Aldebaran, Arcturus and Pollux showed that Arcturus exhibited a long-period radial velocity oscillation, which could be interpreted as a substellar companion. This

mass of Jupiter and be located roughly at the same orbital distance from Arcturus as the Earth is from the Sun, at 1.1 astronomical units. However, all three stars surveyed showed similar oscillations yielding similar companion masses, and the authors concluded that the variation was likely to be intrinsic to the star rather than due to the gravitational effect of a companion. So far no substellar companion has been confirmed.[33]

Mythology

Arcturus in Arctophyllax

One astronomical tradition associates Arcturus with the mythology around

Astronomy.[34]

Aratus in his Phaenomena said that the star Arcturus lay below the belt of Arctophylax, and according to Ptolemy in the Almagest it lay between his thighs.[35]

An alternative lore associates the name with the legend around Icarius, who gave the gift of wine to other men, but was murdered by them, because they had had no experience with intoxication and mistook the wine for poison. It is stated this Icarius, became Arcturus, while his dog, Maira, became Canicula (Procyon), although "Arcturus" here may be used in the sense of the constellation rather than the star.[36]

Cultural significance

As one of the brightest stars in the sky, Arcturus has been significant to observers since antiquity.

In ancient Mesopotamia, it was linked to the god Enlil, and also known as Shudun, "yoke",[19] or SHU-PA of unknown derivation in the Three Stars Each Babylonian star catalogues and later MUL.APIN around 1100 BC.[37]

In ancient Greek the star is found in ancient astronomical literature, e.g. Hesiod's Work and Days, circa 700 BC,[19] as well as Hipparchus's and Ptolemy's star catalogs. The folk-etymology connecting the star name with the bears (Greek: ἄρκτος, arktos) was probably invented much later.[citation needed] It fell out of use in favour of Arabic names until it was revived in the Renaissance.[38]

Arcturus next to the head of Comet Donati in 1858

In Arabic, Arcturus is one of two stars called al-simāk "the uplifted ones" (the other is Spica). Arcturus is specified as السماك الرامح as-simāk ar-rāmiħ "the uplifted one of the lancer". The term Al Simak Al Ramih has appeared in Al Achsasi Al Mouakket catalogue (translated into Latin as Al Simak Lanceator).[39] This has been variously romanized in the past, leading to obsolete variants such as Aramec and Azimech. For example, the name Alramih is used in Geoffrey Chaucer's A Treatise on the Astrolabe (1391). Another Arabic name is Haris-el-sema, from حارس السماء ħāris al-samā’ "the keeper of heaven".[40][41][42] or حارس الشمال ħāris al-shamāl’ "the keeper of north".[43]

In Indian astronomy, Arcturus is called Swati or Svati (Devanagari स्वाति, Transliteration IAST svāti, svātī́), possibly 'su' + 'ati' ("great goer", in reference to its remoteness) meaning very beneficent. It has been referred to as "the real pearl" in Bhartṛhari's kāvyas.[44]

In

Chinese constellation called Jiao Xiu (Chinese: 角宿; pinyin: Jiǎo Xiǔ; lit. 'horn star'). Later it became a part of another constellation Kang Xiu
(Chinese: 亢宿; pinyin: Kàng Xiǔ).

The

Weilwan of northern New South Wales knew Arcturus as Guembila "red".[47]
: 84 

Prehistoric Polynesian navigators knew Arcturus as Hōkūleʻa, the "Star of Joy". Arcturus is the zenith star of the Hawaiian Islands. Using Hōkūleʻa and other stars, the Polynesians launched their double-hulled canoes from Tahiti and the Marquesas Islands. Traveling east and north they eventually crossed the equator and reached the latitude at which Arcturus would appear directly overhead in the summer night sky. Knowing they had arrived at the exact latitude of the island chain, they sailed due west on the trade winds to landfall. If Hōkūleʻa could be kept directly overhead, they landed on the southeastern shores of the Big Island of Hawaii. For a return trip to Tahiti the navigators could use Sirius, the zenith star of that island. Since 1976, the Polynesian Voyaging Society's Hōkūleʻa has crossed the Pacific Ocean many times under navigators who have incorporated this wayfinding technique in their non-instrument navigation.

Arcturus had several other names that described its significance to indigenous Polynesians. In the Society Islands, Arcturus, called Ana-tahua-taata-metua-te-tupu-mavae ("a pillar to stand by"), was one of the ten "pillars of the sky", bright stars that represented the ten heavens of the Tahitian afterlife.[48] In Hawaii, the pattern of Boötes was called Hoku-iwa, meaning "stars of the frigatebird". This constellation marked the path for Hawaiʻiloa on his return to Hawaii from the South Pacific Ocean.[49] The Hawaiians called Arcturus Hoku-leʻa.[50] It was equated to the Tuamotuan constellation Te Kiva, meaning "frigatebird", which could either represent the figure of Boötes or just Arcturus.[51] However, Arcturus may instead be the Tuamotuan star called Turu.[52] The Hawaiian name for Arcturus as a single star was likely Hoku-leʻa, which means "star of gladness", or "clear star".[53] In the Marquesas Islands, Arcturus was probably called Tau-tou and was the star that ruled the month approximating January. The Māori and Moriori called it Tautoru, a variant of the Marquesan name and a name shared with Orion's Belt.[54]

In Inuit astronomy, Arcturus is called the Old Man (Uttuqalualuk in Inuit languages) and The First Ones (Sivulliik in Inuit languages).[55]

The

Miꞌkmaq of eastern Canada saw Arcturus as Kookoogwéss, the owl.[56]

Early-20th-century Armenian scientist

Armenian folklore as Gutani astgh (Armenian: Գութանի աստղ; lit. star of the plow) was in fact Arcturus, as the constellation of Boötes was called "Ezogh" (Armenian: Եզող; lit. the person who is plowing) by Armenians.[57]

In popular culture

In Ancient Rome, the star's celestial activity was supposed to portend tempestuous weather, and a personification of the star acts as narrator of the prologue to Plautus' comedy Rudens (circa 211 BC).[58][59]

The Kāraṇḍavyūha Sūtra, compiled at the end of the 4th century or beginning of the 5th century, names one of Avalokiteśvara's meditative absorptions as "The face of Arcturus".[60]

One of the possible etymologies offered for the name "Arthur" assumes that it is derived from "Arcturus" and that the late 5th to early 6th-century figure on whom the myth of King Arthur is based was originally named for the star.[59][61][62][63][64][65]

In the

Cornelius Agrippa listed its kabbalistic sign under the alternate name Alchameth.[66]

Arcturus's light was employed in the mechanism used to open the 1933 Chicago World's Fair. The star was chosen as it was thought that light from Arcturus had started its journey at about the time of the previous Chicago World's Fair in 1893 (at 36.7 light-years away, the light actually started in 1896).[67]

At the height of the American Civil War, President Abraham Lincoln observed Arcturus through a 9.6-inch refractor telescope when he visited the Naval Observatory in Washington, DC, in August, 1863.[68]

References

  1. ^
    S2CID 18759600
    .
  2. ^ .
  3. ^ .
  4. .
  5. ^ a b Perryman; et al. (1997). "HIP 69673". The Hipparcos and Tycho Catalogues.
  6. ^
    S2CID 2756572
    .
  7. ^ .
  8. .
  9. ^ Liddell, Henry George; Scott, Robert. "Ἀρκτοῦρος". A Greek-English Lexicon. Retrieved 2019-01-16.
  10. ^ Liddell, Henry George; Scott, Robert. "ἄρκτος". A Greek-English Lexicon. Retrieved 2019-01-16.
  11. ^ Liddell, Henry George; Scott, Robert. "οὖρος". A Greek-English Lexicon. Retrieved 2019-01-16.
  12. ^ "Bulletin of the IAU Working Group on Star Names, No. 1" (PDF). Retrieved 28 July 2016.
  13. ^ "IAU Catalog of Star Names". Retrieved 28 July 2016.
  14. .
  15. ^ .
  16. ^ Schaaf, p. 257.
  17. ^ Rao, Joe (June 15, 2007). "Arc to Arcturus, Speed on to Spica". Space.com. Retrieved 14 August 2018.
  18. ^ "Follow the arc to Arcturus, and drive a spike to Spica | EarthSky.org". earthsky.org. April 8, 2018. Retrieved 14 August 2018.
  19. ^ .
  20. .
  21. .
  22. . A141.
  23. . A100.
  24. ^ .
  25. .
  26. .
  27. ^ .
  28. .
  29. . A23.
  30. .
  31. .
  32. ., and see references therein.
  33. .
  34. .
  35. ^ Ridpath, Ian. "Star Tales Boötes". Retrieved 27 November 2022.
  36. ^ Eratosthenes et al. (2015), pp. 38–40, p. 182 (note to p. 40)
  37. .
  38. .
  39. .
  40. ^ "List of the 25 brightest stars". Jordanian Astronomical Society. Archived from the original on March 16, 2012. Retrieved March 28, 2007.
  41. ^ Allen, Richard Hinckley (1936). Star-names and their meanings. pp. 100–101.
  42. ^ Wehr, Hans (1994). Cowan, J. Milton (ed.). A dictionary of modern written Arabic.
  43. .
  44. .
  45. ^ .
  46. .
  47. ^ .
  48. .
  49. ^ Makemson 1941, p. 209.
  50. ^ Makemson 1941, p. 280.
  51. ^ Makemson 1941, p. 221.
  52. ^ Makemson 1941, p. 264.
  53. ^ Makemson 1941, p. 210.
  54. ^ Makemson 1941, p. 260.
  55. ^ "Arcturus". Constellation Guide. Retrieved 20 June 2017.
  56. JSTOR 533799
    .
  57. ^ Daghavarian, Nazaret (1903). Ancient Armenian Religions (in Armenian) (PDF). p. 19. Archived (PDF) from the original on 2022-10-09. Retrieved 12 February 2021.
  58. ^ Plautus. "Rudens". p. prol. 71.
  59. ^ a b Lewis, Charlton T.; Short, Charles (1879). "arctūrus". A Latin Dictionary. Oxford: Clarendon Press. Available on the Perseus Digital Library.
  60. ^ Alan Roberts, Peter; Yeshi, Tulku (2013). "Karandavyuha Sutra Page 45" (PDF). Pacificbuddha. 84000.
  61. .
  62. ^ Zimmer, Stefan (March 2009). "The Name of Arthur – A New Etymology". Journal of Celtic Linguistics. 13 (1). University of Wales Press: 131–136.
  63. .
  64. .
  65. ^ Chambers, Edmund Kerchever (1964). Arthur of Britain. Speculum Historiale. p. 170.
  66. .
  67. ^ "The opening ceremony of A Century of Progress". Century of Progress World's Fair, 1933-1934. University of Illinois-Chicago. January 2008. Retrieved 2022-08-28.
  68. ^ Talcott, Rich (July 14, 2014). "Lincoln and the cosmos". Astronomy Magazine. Retrieved 2022-08-28.

Further reading

External links


This page is based on the copyrighted Wikipedia article: Α Boo. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy