Boron phosphide

Source: Wikipedia, the free encyclopedia.
Boron phosphide
Identifiers
3D model (
JSmol
)
ECHA InfoCard
100.039.616 Edit this at Wikidata
  • [B+3].[P-3]
  • B#P
Properties
BP
Molar mass 41.7855 g/mol
Appearance maroon powder
Density 2.90 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K) (decomposes)
Band gap 2.1 eV (indirect, 300 K)[1]
Thermal conductivity
4.6 W/(cm·K) (300 K)[2]
3.0 (0.63 μm)[1]
Structure
Zinc blende
F43m
Tetrahedral
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Boron phosphide (BP) (also referred to as boron monophosphide, to distinguish it from boron subphosphide, B12P2) is a chemical compound of boron and phosphorus. It is a semiconductor.[3]

History

Crystals of boron phosphide were synthesized by Henri Moissan as early as 1891.[4]

Appearance

Pure BP is almost transparent, n-type crystals are orange-red whereas p-type ones are dark red.[5]

Chemical properties

BP is not attacked by acids or boiling aqueous alkali water solutions. It is only attacked by molten alkalis.[5]

Physical properties

BP is known to be chemically inert and exhibit very high thermal conductivity.[2] Some properties of BP are listed below:

  • lattice constant 0.45383 nm
  • coefficient of thermal expansion 3.65×10−6 /°C (400 K)
  • heat capacity CP ~ 0.8 J/(g·K) (300 K)
  • Debye temperature = 985 K
  • Bulk modulus 152 GPa
  • relatively high microhardness of 32 GPa (100 g load).
  • electron and hole mobilities of a few hundred cm2/(V·s) (up to 500 for holes at 300 K)
  • high thermal conductivity of ~ 460 W/(m·K) at room temperature[2]

See also

References

Further reading