Gamete
Part of a series on |
Sex |
---|
![]() |
Biological terms |
|
Sexual reproduction |
|
Sexuality |
Sexual system |
A gamete (
Gametes of both mating individuals can be the same size and shape, a condition known as
Evolution
It is generally accepted that isogamy is the ancestral state from which anisogamy and oogamy evolved, although its evolution has left no fossil records.[6][7][8] There are almost invariably only two gamete types, all analyses showing that intermediate gamete sizes are eliminated due to selection.[9][10] Since intermediate sized gametes do not have the same advantages as small or large ones,[11] they do worse than small ones in mobility and numbers, and worse than large ones in supply.[12]
Differences between gametes and somatic cells
In contrast to a gamete, which has only one set of chromosomes, a diploid somatic cell has two sets of homologous chromosomes, one of which is a copy of the chromosome set from the sperm and one a copy of the chromosome set from the egg cell. Recombination of the genes during meiosis ensures that the chromosomes of gametes are not exact duplicates of either of the sets of chromosomes carried in the parental diploid chromosomes but a mixture of the two.[13]

Artificial gametes
Artificial gametes, also known as in vitro derived gametes (IVD), stem cell-derived gametes (SCDGs), and in vitro generated gametes (IVG), are gametes derived from
Plants
See also
Notes and references
- ^ "gamete | Definition, Formation, Examples, & Facts". Encyclopedia Britannica. Retrieved 20 October 2020.
- ^ a b c "gamete / gametes | Learn Science at Scitable". www.nature.com. Retrieved 20 October 2020.
- ^ "gamete | Etymology of gamete by etymonline". www.etymonline.com. Retrieved 6 June 2024.
- ^ Cotner S, Wassenberg D, "8.4 Sex: It's About the Gametes", The Evolution and Biology of Sex, retrieved 20 October 2020
- ISBN 978-1-108-49985-9.
- ISBN 978-0-08-091987-4.
- ISBN 978-93-259-9022-7.
- ]
- ISBN 978-3-0348-6273-8.
- PMID 25323972.
- ISBN 978-0-19-164701-7.
- S2CID 3741933.
- ^ "Mitosis, Meiosis, and Inheritance | Learn Science at Scitable". www.nature.com. Retrieved 1 March 2021. Consequently, the cells of the offspring have genes potentially capable of expressing some of the characteristics of both the father and the mother, subject to whether they are dominant or recessive.
- ^ techniques
- ^ S2CID 959092.
- ISBN 978-1015505667.
- ^ PMID 11543285.
- S2CID 85257438.