Geology of the Pacific Northwest
The geology of the Pacific Northwest includes the composition (including
The geology of the Pacific Northwest is vast and complex. Most of the region began forming about 200 million years ago as the
There are at least five geologic provinces in the area: the Cascade Volcanoes, the Columbia Plateau, the North Cascades, the Coast Mountains, and the Insular Mountains. The Cascade Volcanoes are an active volcanic region along the western side of the Pacific Northwest. The Columbia Plateau is a region of subdued geography that is inland of the Cascade Volcanoes, and the North Cascades are a mountainous region in the northwest corner of the United States, extending into British Columbia. The Coast Mountains and Insular Mountains are a strip of mountains along the coast of British Columbia, each with its own geological history.
Volcanoes
The Cascade Volcanoes
The Cascades Province forms an arc-shaped band extending from southwestern British Columbia to Northern California, roughly parallel to the Pacific coastline. Within this region, nearly 20 major volcanic centers lie in sequence.[1]

Although the largest volcanoes like Mount St. Helens get the most attention, the Cascade Volcanic Arc includes a band of thousands of very small, short-lived volcanoes that have built a platform of lava and volcanic debris. Rising above this volcanic platform are a few strikingly large volcanoes that dominate the landscape.[1]
The Cascade volcanoes define the Pacific Northwest section of the
Beneath the Cascade Volcanic Arc, a dense oceanic plate sinks beneath the
A close-up look at the Cascades reveals a more complicated picture than a simple subduction zone.[2]
Not far off the coast of the

There are some unusual features at the
The small Juan de Fuca Plate and two platelets, the

The Cascade Volcanic Arc made its first appearance 36 million years ago, but the major peaks that rise up from today's volcanic centers were born within the last 1.6 million years. More than 3,000 vents erupted during the most recent volcanic episode that began 5 million years ago. As long as subduction continues, new Cascade volcanoes will continue to rise.[2]
Volcanism outside the Cascades

The

The most active volcanic region of the northern Pacific Northwest is called the

The
The Chilcotin Group in southern British Columbia is a north–south range of volcanoes, thought to have formed as a result of back-arc extension behind the Cascadia subduction zone. The majority of the eruptions in this belt happened either 6 to 10 million years ago (Miocene) or 2–3 million years ago (Pliocene). However, there have been few eruptions in the Pleistocene.[3]
The Wells Gray-Clearwater volcanic field in south-eastern British Columbia consists of several small basaltic volcanoes and extensive lava flows that have been active for the past 3 million years.[4] It is within the Wells Gray Provincial Park, which also includes the 142 m (465 ft)-high Helmcken Falls. The origin of the volcanism is unknown, but is probably related to crustal thinning. Some of the lava flows in the field are similar to those that erupted at Volcano Mountain in the Yukon, where olivine nephelinite occurs. The last eruption in the field was about 400 years ago at Kostal Cone.
Numerous
Volcanic disasters
The last eruption of the Tseax Cone around the years 1750 or 1775 is Canada's worst known geophysical disaster. The eruption produced a 22.5 km (14.0 mi) long lava flow, destroying the Nisga'a villages and the death of at least 2000 Nisga'a people by volcanic gases and poisonous smoke. The Nass River valley was inundated by the lava flows and contain abundant tree molds and lava tubes. The event coincided with the arrival of the first European explorers to penetrate the uncharted coastal waters of northern British Columbia. Today, the basaltic lava deposits are a draw to tourists and are part of the Nisga'a Memorial Lava Bed Provincial Park.
Recent volcanic activity

The Pacific Northwest volcanoes continue to be a geologically active area. The most geologically recent volcanic eruptions include:
- Level Mountain, Canada's most voluminous and most persistent eruptive center, might have erupted in the Holocene.
- Nazko Cone, the youngest volcano in the Anahim Volcanic Belt, erupted 7200 BP.
- Hoodoo Mountain erupted 7050 BP.
- Lava Butte, Oregon erupted about 7,000 years ago.
- Mount Mazama, which erupted catastrophically in 5670 BCE to form Crater Lake.
- Mount Meager massif erupted about 2350 BP, sending an ash column 20 km (12 mi) high into the stratosphere.
- Mount Edziza volcanic complex, Canada's second largest eruptive center, erupted about 1340 BP.
- Medicine Lake Volcano erupted about 1000 BP.
- Silverthrone Caldera might have eruptions younger than 1000 BP.
- Kostal Cone in the Wells Gray-Clearwater volcanic field might have erupted and formed in 1500 based on tree-ring dating.
- Glacier Peak erupted in the 17th or 18th century.
- Tseax Cone erupted in the 18th century.
- Mount Hood erupted in 1781–82; fumaroles on the summit still spew sulfurous gas.
- Mount Shasta erupted in 1786.
- The Volcano erupted about 150 BP, producing a 22.5 km (14.0 mi) long lava flow.
- Mount Rainier erupted 1854.
- Mount Baker erupted in 1880; fumaroles still occur at its summit.
- Ruby Mountain might have erupted in 1898.
- Lassen Peak erupted in 1914–5.
- Mount St. Helens erupted in 1980, killing 57 people. (see 1980 eruption of Mount St. Helens).
Seismic activity

The Pacific Northwest is seismically active. The
In addition, eleven volcanoes in Canada have had seismic activity since 1975, including: the Silverthrone Caldera, Mount Meager massif, Wells Gray-Clearwater volcanic field, Mount Garibaldi, Mount Cayley, Castle Rock, The Volcano, Mount Edziza volcanic complex, Hoodoo Mountain, Crow Lagoon and Nazko Cone.[7]
Columbia Plateau

The Columbia Plateau province is enveloped by one of the world's largest accumulations of basalt. Over 500,000 km2 (190,000 sq mi) of the Earth's surface is covered by it. The topography here is dominated by geologically young lava flows that inundated the countryside with amazing speed, all within the last 17 million years.[8]
Over 170,000 km3 (41,000 cu mi) of basaltic lava, known as the Columbia River Basalt Group, covers the western part of the province. These tremendous flows erupted between 17–6 million years ago. Most of the lava flooded out in the first 1.5 million years: an extraordinarily short time for such an outpouring of molten rock.[8]
The Snake River Plain stretches across Oregon, through northern Nevada, southern Idaho, and ends at the Yellowstone Plateau in Wyoming. Looking like a great spoon scooped out the Earth surface, the smooth topography of this province forms a striking contrast with the strong mountainous fabric around it.[8]
The Snake River Plain lies in a distinct depression. At the western end, the base has dropped down along

Like the Columbia River region, volcanic eruptions dominate the story of the Snake River Plain in the eastern part of the Columbia Plateau Province. The earliest Snake River Plain eruptions began about 15 million years ago, just as the tremendous early eruptions of Columbia River Basalt were ending. But most of the Snake River Plain volcanic rock is less than a few million years old, Pliocene age (5–1.6 million years ago) and younger.[8]
In the west, the Columbia River Basalts are just that: almost exclusively black basalt. Not so in the Snake River Plain, where relatively quiet eruptions of soupy black basalt lava flows alternated with tremendous explosive eruptions of rhyolite, a light-colored volcanic rock.[8]
Cinder cones dot the landscape of the Snake River Plain. Some are aligned along vents, the fissures that fed flows and cone-building eruptions. Calderas, great pits formed by explosive volcanism, and low shield volcanoes, and rhyolite hills are also part of the landscape here, but many are obscured by later lava flows.[8]
Evidence suggests that some concentrated heat source is melting rock beneath the Columbia Plateau Province. At the base of the lithosphere (the layer of crust and
Although scientists are still gathering evidence, a probable explanation is that a
When the hot plume arrives at the base of the lithosphere, some of the lighter rock of the lithosphere rapidly melts. It is this molten lithosphere that becomes the basalt lavas that gush onto the surface to form the Columbia River and Snake River Plain basalts.[8]
The track of this hot spot starts in the west and sweeps up to Yellowstone National Park. The steaming fumaroles and explosive geysers are ample evidence of a concentration of heat beneath the surface. The hotspot is probably quite stationary, but the North American plate is moving over it, creating a superb record of the rate and direction of plate motion.[8]
The Ice Age floods
With the beginning of the Pleistocene time (about one million years ago), cooling temperatures provided conditions favorable for the creation of continental glaciers. Over the centuries, as snowfall exceeded melting and evaporation, a great accumulation of snow covered part of the continent, forming extensive ice fields. This vast continental ice sheet reached a thickness of about 1,200 m (4,000 ft) in some areas. Sufficient pressure on the ice caused it to flow outward as a glacier. The glacier moved south out of Canada, damming rivers and creating lakes in Washington, Idaho and Montana.[9]
The ice blocked the Clark Fork River, forming the huge Glacial Lake Missoula. The lake measured about 7,700 km2 (3,000 sq mi) and contained about 2,100 km3 (500 cu mi), half the volume of Lake Michigan.[10]

Glacial Lake Missoula broke through the ice dam many times, allowing a tremendous volume of water to rush across northern Idaho and into eastern Washington.
As the floods in this vicinity raced southward, two major cascades formed along their course. The larger cataract was that of the upper Grand Coulee, where the river roared over an 240 m (800 ft) waterfall. The eroding power of the water plucked pieces of basalt from the precipice, causing the falls to retreat 32 km (20 mi) and self-destruct by cutting through to the Columbia River valley near what is now the Grand Coulee Dam.[9]
The other major cataract is now known as Dry Falls. It started near Soap Lake in Washington State, where less resistant basalt layers gave way before the great erosive power of this tremendous torrent and waterfalls developed. As in the upper Grand Coulee, the raging river yanked chunks of rock from the face of the falls and the falls eventually retreated to their present location. Dry Falls is 5.6 km (3.5 mi) wide, with a drop of more than 120 m (400 ft). By way of comparison, Niagara Falls, 1.6 km (1 mi) wide with a drop of only 50 m (165 ft), would be dwarfed by Dry Falls.[9]
The North Cascades
The North Cascade Range in
In geology, the range has more in common with the Coast Ranges of British Columbia and Alaska than it does with its Cordilleran cousins in the Rocky Mountains or Sierra Nevada. Although the peaks of the North Cascades do not reach great elevations (high peaks are generally in the 2,100 to 2,400 m (7,000 to 8,000 ft) range, their overall relief, the relatively uninterrupted vertical distance from valley bottom to mountain top, is commonly 1,200 to 1,800 m (4,000 to 6,000 ft).[12]
Rocks of the North Cascades record at least 400 million years of history. The record of this long history can be read in the many rock layers deposited over time through the forces of erosion, volcanic activity and plate subduction. These different forces have made a geologic mosaic made up of volcanic
About 35 million years ago, a volcanic arc grew across this complex mosaic of old terranes. Volcanoes erupted to cover the older rocks with lava and ash. Large masses of molten rock invaded the older rocks from below. The volcanic arc is still active today, decorating the skyline with the cones of Mount Baker and Glacier Peak.[12]

The deep canyons and sharp peaks of today's North Cascades scene are products of profound erosion. Running water has etched out the grain of the range, landslides have softened the abrupt edges, homegrown glaciers have scoured the peaks and high valleys and, during the
Coast Mountains
The
Most of the Coast Mountains are composed of

The Coast Mountains consist of a single uplifted mass. During the Pliocene period the Coast Mountains did not exist and a level peneplain extended to the sea. This mass was uplifted during the Miocene period. Rivers such as the Klinaklini River and Homathko River predate this uplift and due to erosion occurring faster than uplift, have continued to flow right up to the present day, directly across the axis of the range. The mountains flanking the Homathko River are the highest in the Coast Mountains, and include Mount Waddington west of the river in the Waddington Range and Mount Queen Bess east of the river, adjacent to the Homathko Icefield.
The Pacific Ranges in southwestern British Columbia are the southernmost subdivision of the Coast Mountains. It has been characterized by rapid rates of uplift over the past 4 million years unlike the North Cascades and has led to relatively high rates of erosion.
Insular Mountains
The

The Insular Mountains were formed when a large
See also
- Beaverhead impact structure, Idaho
- Cascade Range
- Cascade Volcanoes
- Cascadia subduction zone
- Challis Arc
- Columbia River Basalt Group
- Fort Rock
- Garibaldi Volcanic Belt
- Geology of British Columbia
- Geology of North America
- Geology of the Lassen volcanic area
- Hole-in-the-Ground
- List of volcanoes in Canada
- Olympic–Wallowa Lineament
- Puget Sound faults
- Siletzia
- Volcanology of Canada
References
- ^ a b
This article incorporates public domain material from Pacific – Cascades Volcanic Province. United States Geological Survey.
- ^ a b c d e f g
This article incorporates public domain material from Pacific – Cascades Volcanic Province. United States Geological Survey.
- ^ Volcanoes of Canada-Map of Canadian volcanoes. Retrieved on 2007-06-24
- ^ Catalogue of Canadian volcanoes: Wells Gray-Clearwater volcano field Retrieved on 2007-07-25
- ^ "Great Cascadia Earthquake Penrose Conference". USGS Earthquake Hazards Program. Archived from the original on 2004-08-17. Retrieved 2007-04-23.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ Reynolds, Nathaniel D. (December 2001). "Dating the Bonneville Landslide with Lichenometry" (PDF). Washington Geology. 29 (3/4): 11–16. Retrieved 2009-09-07.
- ^ "Volcanoes of Canada" (PDF). Archived from the original on 2006-05-28. Retrieved 2007-06-24.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ a b c d e f g h i j k
This article incorporates public domain material from "Geologic Provinces of the United States: Columbia Plateau Province". USGS Geology in the Parks. United States Geological Survey. Archived from the original on 2006-09-22.
- ^ a b c d
This article incorporates public domain material from "Geology". Lake Roosevelt National Recreation Area. National Park Service. Retrieved 2007-04-23.
- ISBN 978-1-879628-27-4.
- S2CID 219072904.
- ^ a b c d e f
This article incorporates public domain material from North Cascades Geology. United States Geological Survey. Archived from the original on 2008-01-13. Retrieved 2007-04-22.
- ^ U-Pb dates from the Scotia-Quaal metamorphic belt, Coast Plutonic Complex, central-western British Columbia Retrieved on 2007-12-02
- ^ Coast Mountains Archived 2007-12-17 at the Wayback Machine in the Canadian Mountain Encyclopedia. Retrieved on 2007-12-02
- ^ Insular Mountains in the Canadian Mountain Encyclopedia. Retrieved on 2007-12-02
External links
- Burke Museum web site Geologic history of Washington.
- Evolution of the Pacific Northwest Good text on the geology of Cascadia.
- One link on Northwest geology
- Reducing Earthquake Losses Throughout the United States: Averting Surprises in the Pacific Northwest (USGS)
- USGS site on earthquakes
- On the eruption of Mt. Meager Archived 2007-04-17 at the Wayback Machine