Laplace-P

Source: Wikipedia, the free encyclopedia.
Laplace-P
NamesEuropa Lander (2009–2011)
Mission typeReconnaissance by
Roscosmos
Mission duration≥ 10 years
Spacecraft properties
Launch massorbiter: 4,000 kg (8,800 lb)
lander: 950 kg (2,090 lb)[1]
Dry massorbiter: 2,260 kg (4,980 lb)
lander: 550 kg (1,210 lb)
Payload massorbiter: 50 kg (110 lb)
lander: 60 kg (130 lb) [1]
Start of mission
Launch date2026 (proposed)[2]
RocketAngara-A5 with the KVTK upper stage (proposed)[3]
Orbital parameters
PeriJovian altitude900,000 km (560,000 mi)
ApoJovian altitude20,000,000 km (12,000,000 mi)
Period200 days
Ganymede lander
Landing date2030 (proposed)
 

Laplace-P (

Russian Federal Space Agency designed to study the Jovian moon system and explore Ganymede with a lander
.

Initially proposed to launch with the European Jupiter Icy Moons Explorer (JUICE) in 2022, this was later changed to an independent launch on an Angara-A5 in 2023.[1][4][5] The mission was cancelled due to a lack of funding in 2017.[6]

History

The Europa Lander would have been launched in 2020s as part of the

internal ocean that may contain more water than all of Earth's oceans together.[8][9]

The orbiter would perform 13 flybys of Ganymede, and 4 flybys of Callisto and carry up to 50 kg (110 lb) of scientific instruments, while the Europa lander would have carried up to 70 kg (150 lb) of scientific instruments.[10][11]

Laplace-P was cancelled in 2017 to allow more funding for the Venera-D mission.[6]

Concept

Artist's cut-away representation of the internal structure of Ganymede. Layers drawn to scale.

Laplace-P would be a dual mission featuring an orbiter (code name LP1) and a lander (code name LP2) to be launched together toward Jupiter. One spacecraft would orbit the moon Ganymede, while the lander would perform a soft landing on its surface.[1][12] The "P" in Laplace-P stands for "posadka" (landing).

The planned trajectory is to use the VEEGA (Venus-Earth-Earth Gravity Assist) route.[13] Both spacecraft would be carrying about 50 kg (110 lb) of scientific instruments each.[1] The lander would be powered by an RTG, while the orbiter would be equipped either with an RTG or with solar panels.[1] If the lander is launched together with JUICE, then the Russian orbiter would be omitted due to JUICE filling its role. The advanced Russian project Laplace-P orbiter's objectives is to map the surface for lander. The main objective of the lander is to carry out remote and in-situ investigations of Ganymede's surface.[14]

The radiation conditions on the Ganymede surface are fairly benign. On the other hand, the Ganymedean gravitational parameter (GM = 9887.8 km3/s2) makes the landing on it from the orbit more difficult than in the case of Europa.[13]

Objectives

The main objectives of the mission would have been to study Ganymede's atmosphere, icy surface, habitability, and perform an in-situ search for biosignatures.[3]

See also

References

  1. ^ a b c d e f g h "Russia funds a proposal to land on Jupiter's moon Ganymede". Russianspaceweb. Archived from the original on July 30, 2015. Retrieved August 11, 2016.
  2. TASS
    . 5 July 2016. Retrieved 2017-01-08.
  3. ^
  4. SPACE.com
    . Retrieved August 25, 2015.
  5. ^ a b L. Zelenyi; et al. (2009). Europa Lander: Mission Concept and Science Goals (PDF). European Planetary Science Congress. Vol. 4. EPSC2009-615-1. Archived (PDF) from the original on 2021-07-20.
  6. ^ a b Струговец, Дмитрий (15 July 2017). "Вице-президент РАН: сроки реализации лунной программы сдвинулись ради проекта «ЭкзоМарс»". TASS. Archived from the original on 5 July 2018.
  7. ^ K.P. Hand (February 9–13, 2009). "Report on the Europa Lander Workshop" (PDF).
  8. ^ Staff (March 12, 2015). "NASA's Hubble Observations Suggest Underground Ocean on Jupiter's Largest Moon". NASA News. Retrieved 2015-03-15.
  9. ^ Clavin, Whitney (1 May 2014). "Ganymede May Harbor 'Club Sandwich' of Oceans and Ice". NASA. Jet Propulsion Laboratory. Retrieved 2014-05-01.
  10. ^ International Workshop "Europa lander: science goals and experiments". 9–13 February 2009.
  11. ^ International Workshop “Europa lander: science goals and experiments” Archived 2021-07-19 at the Wayback Machine (9–13 February 2009) [announcement]
  12. S2CID 255277449
    .
  13. ^ a b Grushevskii, A. V.; Golubev, Yu.F.; Koryanov, V.V.; Tuchin, A. G. To the Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing (PDF) (Report). Archived (PDF) from the original on 2022-04-19. Retrieved 2016-03-09.
  14. S2CID 255067651
    . Retrieved 26 Feb 2018.