Lead(II) nitrate

Source: Wikipedia, the free encyclopedia.
Lead(II) nitrate
Identifiers
3D model (
JSmol
)
ChemSpider
ECHA InfoCard
100.030.210 Edit this at Wikidata
EC Number
  • 233-245-9
RTECS number
  • OG2100000
UNII
UN number 1469
  • InChI=1S/2NO3.Pb/c2*2-1(3)4;/q2*-1;+2
    Key: RLJMLMKIBZAXJO-UHFFFAOYSA-N
  • [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Pb+2]
Properties
Pb(NO3)2
Molar mass 331.2 g/mol
Appearance colorless or white
Density 4.53 g/cm3
Melting point 470 °C (878 °F; 743 K)[2] decomposes
376.5 g/L (0 °C)
597 g/L (25°C)
1270 g/L (100°C)
−74·10−6 cm3/mol[1]
1.782[2]
Thermochemistry
Std enthalpy of
formation
fH298)
−451.9 kJ·mol−1[1]
Hazards
GHS labelling:[4]
GHS05: CorrosiveGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H302, H317, H318, H332, H360, H373, H410
P201, P202, P210, P220, P221, P260, P261, P264, P270, P271, P272, P273, P280, P281, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P308+P313, P310, P312, P314, P321, P330, P333+P313, P363, P370+P378, P391, P405, P501
NFPA 704 (fire diamond)
Lethal dose or concentration (LD, LC):
500 mg/kg (guinea pig, oral)[3]
Safety data sheet (SDS) ICSC 1000
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lead(II) nitrate is an

water
.

Known since the

lead compounds. In the nineteenth century lead(II) nitrate began to be produced commercially in Europe and the United States. Historically, the main use was as a raw material in the production of pigments for lead paints, but such paints have been superseded by less toxic paints based on titanium dioxide. Other industrial uses included heat stabilization in nylon and polyesters, and in coatings of photothermographic paper. Since around the year 2000, lead(II) nitrate has begun to be used in gold cyanidation
.

Lead(II) nitrate is toxic and must be handled with care to prevent inhalation, ingestion and skin contact. Due to its hazardous nature, the limited applications of lead(II) nitrate are under constant scrutiny.

History

Lead nitrate was first identified in 1597 by the

explosives.[9]

Production

Lead nitrate is produced by reaction of lead(II) oxide with concentrated nitric acid:[10]

PbO + 2 HNO3(concentrated) → Pb(NO3)2↓ + H2O

It may also be obtained evaporation of the solution obtained by reacting metallic lead with dilute nitric acid.[11]

Pb + 4 HNO3 → Pb(NO3)2 + 2 NO2 + 2 H2O

Solutions and crystals of lead(II) nitrate are formed in the processing of lead–bismuth wastes from lead refineries.[12]

Structure

Coordination sphere of the Pb2+ ion
Crystal structure of Pb(NO3)2 [111] plane

The crystal structure of solid lead(II) nitrate has been determined by neutron diffraction.[13][14] The compound crystallizes in the cubic system with the lead atoms in a face-centred cubic system. Its space group is Pa3Z=4 (Bravais lattice notation), with each side of the cube with length 784 picometres.

The black dots represent the lead atoms, the white dots the nitrate groups 27 picometres above the plane of the lead atoms, and the blue dots the nitrate groups the same distance below this plane. In this configuration, every lead atom is bonded to twelve oxygen atoms (bond length: 281 pm). All N–O bond lengths are identical, at 127 picometres.[15]


Research interest in the crystal structure of lead(II) nitrate was partly based on the possibility of free internal rotation of the nitrate groups within the crystal lattice at elevated temperatures, but this did not materialise.[14]

Chemical properties and reactions

Solubility of lead nitrate in nitric acid at 26 °C.[16]

Lead nitrate decomposes on heating, a property that has been used in pyrotechnics .[9] It is soluble in water and dilute nitric acid.

Basic nitrates are formed in when alkali is added to a solution. Pb2(OH)2(NO3)2 is the predominant species formed at low pH. At higher pH Pb6(OH)5(NO3) is formed.[17] The cation [Pb6O(OH)6]4+ is unusual in having an oxide ion inside a cluster of 3 face-sharing PbO4 tetrahedra.[18] There is no evidence for the formation of the hydroxide, Pb(OH)2, in aqueous solution below pH 12.

Solutions of lead nitrate can be used to form co-ordination complexes. Lead(II) is a

trans configuration. The total coordination number is 10, with the lead ion in a bicapped square antiprism molecular geometry
.

The complex formed by lead nitrate with a

bithiazole bidentate N-donor ligand is binuclear. The crystal structure shows that the nitrate group forms a bridge between two lead atoms.[20] One interesting aspect of this type of complexes is the presence of a physical gap in the coordination sphere; i.e., the ligands are not placed symmetrically around the metal ion. This is potentially due to a lead lone pair of electrons, also found in lead complexes with an imidazole ligand.[21]

Applications

Lead nitrate has been used as a heat stabiliser in nylon and polyesters, as a coating for photothermographic paper, and in rodenticides.[10]

Heating lead nitrate is convenient means of making nitrogen dioxide

In the gold cyanidation process, addition of lead(II) nitrate solution improves the leaching process. Only limited amounts (10 to 100 milligrams lead nitrate per kilogram gold) are required.[22][23]

In organic chemistry, it may be used in the preparation of isothiocyanates from dithiocarbamates.[24] Its use as a bromide scavenger during SN1 substitution has been reported.[25]

Safety

Lead(II) nitrate is toxic, and ingestion may lead to acute lead poisoning, as is applicable for all soluble lead compounds.

δ-aminolevulinic acid dehydratase (porphobilinogen synthase) in the haem biosynthetic pathway and pyrimidine-5′-nucleotidase, important for the correct metabolism of DNA and can therefore cause fetal damage.[29]

References

  1. ^
    OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link
    )
  2. ^ .
  3. ^ "Lead compounds (as Pb)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ "Lead nitrate". pubchem.ncbi.nlm.nih.gov. Retrieved 19 December 2021.
  5. ^ Libavius, Andreas (1595). Alchemia Andreæ Libavii. Francofurti: Iohannes Saurius.
  6. ^ Chisholm, Hugh, ed. (1911). "Lead" . Encyclopædia Britannica. Vol. 16 (11th ed.). Cambridge University Press. pp. 314–320.
  7. .
  8. ^ Partington, James Riddick (1950). A Text-book of Inorganic Chemistry. MacMillan. p. 838.
  9. ^ a b Barkley, J. B. (October 1978). "Lead nitrate as an oxidizer in blackpowder". Pyrotechnica. 4. Post Falls, Idaho: Pyrotechnica Publications: 16–18.
  10. ^ .
  11. .
  12. ^ "Product catalog; other products". Tilly, Belgium: Sidech. Archived from the original on 2007-07-01. Retrieved 2008-01-05.
  13. .
  14. ^ .
  15. . Retrieved 15 July 2019.
  16. .
  17. .
  18. . p. 395
  19. .
  20. .
  21. .
  22. ^ Habashi, Fathi (1998). "Recent advances in gold metallurgy". Revisa de la Facultad de Ingeniera, Universidad Central de Venezuela. 13 (2): 43–54.
  23. ^ "Auxiliary agents in gold cyanidation". Gold Prospecting and Gold Mining. Retrieved 2008-01-05.
  24. ^ Dains, F. B.; Brewster, R. Q.; Olander, C. P. "Phenyl isothiocyanate". Organic Syntheses; Collected Volumes, vol. 1, p. 447.
  25. ^ Rapoport, H.; Jamison, T. (1998). "(S)-N-(9-Phenylfluoren-9-yl)alanine and (S)-Dimethyl-N-(9-phenylfluoren-9-yl)aspartate". Organic Syntheses; Collected Volumes, vol. 9, p. 344.
  26. ^ "Lead nitrate, Chemical Safety Card 1000". International Labour Organization, International Occupational Safety and Health Information Centre. March 1999. Retrieved 2008-01-19.
  27. ^ "Inorganic and Organic Lead Compounds" (PDF). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Suppl. 7. International Agency for Research on Cancer: 239. 1987. Archived from the original (PDF) on 2008-03-06. Retrieved 2008-01-19.
  28. ISBN 92-832-1287-8. Archived from the original
    (PDF) on 2007-10-21. Retrieved 2008-01-01.
  29. .

External links

  • Woodbury, William D. (1982). "Lead". Mineral Yearbook Metals and Minerals. Bureau of Mines: 515–42. Retrieved 2008-01-18.
  • "Lead". NIOSH Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. September 2005. NIOSH 2005-149. Retrieved 2008-01-19.
  • "Lead and Lead Compounds Fact Sheet". National Pollutant Inventory. Australian Government, Department of the Environment and Water Resources. July 2007. Archived from the original on January 11, 2008. Retrieved 2008-01-19.
  • "Lead". A Healthy Home Environment, Health Hazards. US Alliance for healthy homes. Archived from the original on 2008-02-20. Retrieved 2008-01-19.
Material Safety Data Sheets