Monitoring (medicine)

Source: Wikipedia, the free encyclopedia.
Display device of a medical monitor as used in anesthesia
A patient of an intensive care unit in a German hospital in 2015, with a monitoring screen displaying a graphical electrocardiogram, the heart rate and blood pressure all in real time

In medicine, monitoring is the observation of a disease, condition or one or several medical parameters over time.

It can be performed by continuously measuring certain parameters by using a medical monitor (for example, by continuously measuring

diabetes mellitus
).

Transmitting data from a monitor to a distant monitoring station is known as telemetry or biotelemetry.

Classification by target parameter

Monitoring can be classified by the target of interest, including:

Vital parameters

anesthetic machine with integrated systems for monitoring of several vital parameters, including blood pressure and heart rate

Monitoring of

cardiac conditions before visible signs are noticeable to clinical staff, such as atrial fibrillation or premature ventricular contraction
(PVC).

Medical monitor

A medical monitor or physiological monitor is a medical device used for monitoring. It can consist of one or more sensors, processing components, display devices (which are sometimes in themselves called "monitors"), as well as communication links for displaying or recording the results elsewhere through a monitoring network.[citation needed]

Components

Sensor

Sensors of medical monitors include biosensors and mechanical sensors. For example, photodiode is used in pulse oximetry, Pressure sensor used in Non Invasive bood pressure measurement.

Translating component

The translating component of medical monitors is responsible for converting the signals from the sensors to a format that can be shown on the display device or transferred to an external display or recording device.

Display device

Physiological data are displayed continuously on a

data channels along the time axis. They may be accompanied by numerical readouts of computed parameters on the original data, such as maximum, minimum and average values, pulse and respiratory frequencies, and so on.[citation needed
]

Besides the tracings of physiological parameters along time (X axis), digital medical displays have automated numeric readouts of the peak and/or average parameters displayed on the screen.

Modern medical display devices commonly use digital signal processing (DSP), which has the advantages of miniaturization, portability, and multi-parameter displays that can track many different vital signs at once.[citation needed]

Old

electrical interference, base level fluctuations and absence of numeric readouts and alarms.[citation needed
]

Communication links

Several models of multi-parameter monitors are networkable, i.e., they can send their output to a central ICU monitoring station, where a single staff member can observe and respond to several bedside monitors simultaneously. Ambulatory telemetry can also be achieved by portable, battery-operated models which are carried by the patient and which transmit their data via a wireless data connection.

Digital monitoring has created the possibility, which is being fully developed, of integrating the physiological data from the patient monitoring networks into the emerging hospital

HL7. This newer method of charting patient data reduces the likelihood of human documentation error and will eventually reduce overall paper consumption. In addition, automated ECG interpretation incorporates diagnostic codes automatically into the charts. Medical monitor's embedded software
can take care of the data coding according to these standards and send messages to the medical records application, which decodes them and incorporates the data into the adequate fields.

Long-distance connectivity can avail for

telemedicine, which involves provision of clinical health care
at a distance.

Other components

A medical monitor can also have the function to produce an alarm (such as using audible signals) to alert the staff when certain criteria are set, such as when some parameter exceeds of falls the level limits.

Mobile appliances

An entirely new scope is opened with mobile carried monitors, even such in sub-skin carriage. This class of monitors delivers information gathered in body-area networking (

.

Interpretation of monitored parameters

Monitoring of clinical parameters is primarily intended to detect changes (or absence of changes) in the clinical status of an individual. For example, the parameter of

respiratory
capability of an individual.

Change in status versus test variability

When monitoring a clinical parameters, differences between test results (or values of a continuously monitored parameter after a time interval) can reflect either (or both) an actual change in the status of the condition or a

test-retest variability
of the test method.

In practice, the possibility that a difference is due to test-retest variability can almost certainly be excluded if the difference is larger than a predefined "critical difference". This "critical difference" (CD) is calculated as:[2]

, where:[2]

  • K, is a factor dependent on the preferred probability level. Usually, it is set at 2.77, which reflects a 95% prediction interval, in which case there is less than 5% probability that a test result would become higher or lower than the critical difference by test-retest variability in the absence of other factors.
  • CVa is the analytical variation
  • CVi is the
    intra-individual variability

For example, if a patient has a hemoglobin level of 100 g/L, the analytical variation (CVa) is 1.8% and the intra-individual variability CVi is 2.2%, then the critical difference is 8.1 g/L. Thus, for changes of less than 8 g/L since a previous test, the possibility that the change is completely caused by test-retest variability may need to be considered in addition to considering effects of, for example, diseases or treatments.

Critical differences for some blood tests[2]
Sodium 3%
Potassium 14%
Chloride 4%
Urea 30%
Creatinine 14%
Calcium 5%
Albumin 8%
Fasting glucose
15%
Amylase 30%
Carcinoembryonic antigen 69%
C-reactive protein 43%[3]
Glycated hemoglobin 21%
Hemoglobin 8%
Erythrocytes
10%
Leukocytes
32%
Platelets
25%
Unless otherwise specified, then reference for critical values is Fraser 1989[2]

Critical differences for other tests include early morning urinary albumin concentration, with a critical difference of 40%.[2]

Delta check

In a clinical laboratory, a delta check is a laboratory quality control method that compares a current test result with previous test results of the same person, and detects whether there is a substantial difference, as can be defined as a critical difference as per previous section, or defined by other pre-defined criteria. If the difference exceeds the pre-defined criteria, the result is reported only after manual confirmation by laboratory personnel, in order to exclude a laboratory error as a cause of the difference.[4] In order to flag samples as deviating from previously, the exact cutoff values are chosen to give a balance between sensitivity and the risk of being overwhelmed by false-positive flags.[5] This balance, in turn, depends on the different kinds of clinical situations where the cutoffs are used, and hence, different cutoffs are often used at different departments even in the same hospital.[5]

Techniques in development

The development of new techniques for monitoring is an advanced and developing field in

nanorobots) and advanced computerized medical diagnosis and early warning tools over a short clinical interview and drug prescription
.

As

drugs-only approach of old school medical treatment, new researches that shows the enormous damage medications can cause,[8][9] researchers are working to fulfill the need for a comprehensive further study and personal continuous clinical monitoring
of health conditions while keeping legacy medical intervention as a last resort.

In many medical problems, drugs offer temporary relief of symptoms while the root of a medical problem remains unknown without enough data of all our biological systems[10] . Our body is equipped with sub-systems for the purpose of maintaining balance and self healing functions. Intervention without sufficient data might damage those healing sub systems.[10] Monitoring medicine fills the gap to prevent diagnosis errors and can assist in future medical research by analyzing all data of many patients.

Given Imaging Capsule endoscopy

Examples and applications

The development cycle in medicine is extremely long, up to 20 years, because of the need for U.S. Food and Drug Administration (FDA) approvals, therefore many of monitoring medicine solutions are not available today in conventional medicine.

The PASCAL Dynamic Contour Tonometer. A monitor for detection of increased intraocular pressure.
Blood glucose monitoring
diabetes mellitus type 2 .[11]
Stress monitoring
Bio sensors may provide warnings when stress levels signs are rising before human can notice it and provide alerts and suggestions.[12] Deep neural network models using photoplethysmography imaging (PPGI) data from mobile cameras can assess stress levels with a high degree of accuracy (86%).[13]
Serotonin biosensor
Future serotonin biosensors may assist with mood disorders and depression.[14]
Continuous blood test based nutrition
In the field of
evidence-based nutrition, a lab-on-a-chip implant that can run 24/7 blood tests
may provide a continuous results and a computer can provide nutrition suggestions or alerts.
Psychiatrist-on-a-chip
In clinical brain sciences drug delivery and in vivo Bio-MEMS based biosensors may assist with preventing and early treatment of mental disorders
Epilepsy monitoring
In
epileptic seizure and prevent them with changes of daily life activity like sleep, stress, nutrition and mood management.[15]
Toxicity monitoring
Smart biosensors may detect toxic materials such mercury and lead and provide alerts.[16]

See also

References

  1. PMID 20694797
    .
  2. ^ .
  3. ^ C‐reactive protein (serum, plasma) from The Association for Clinical Biochemistry and Laboratory Medicine. Author: Brona Roberts. Copyrighted 2012
  4. PMID 22950070.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  5. ^
    American Association for Clinical Chemistry
    .
  6. ^ "Healthcare 2030: disease-free life with home monitoring nanomedince". Positivefuturist.com.
  7. ^ "Nanosensors for Medical Monitoring". Technologyreview.com. Archived from the original on 2012-01-31. Retrieved 2011-08-22.
  8. ^ "Brain Damage Caused by Neuroleptic Psychiatric Drugs". Mindfreedom.org. 2007-09-15.
  9. ^ "Medications That Can Cause Nerve Damage". Livestrong.com.
  10. ^ .
  11. .
  12. S2CID 902182. Archived from the original
    (PDF) on 2020-07-30.
  13. .
  14. .
  15. .
  16. .

Further reading

External links