Sandwich compound

Source: Wikipedia, the free encyclopedia.
Space-filling model of ferrocene, the archetypal sandwich compound

In

metallocenes
.

The term sandwich compound was introduced in organometallic nomenclature in 1956 in a report by J. D. Dunitz, L. E. Orgel and R. A. Rich, who confirmed the structure of ferrocene by X-ray crystallography.[1] The correct structure, in which the molecule features an iron atom sandwiched between two parallel cyclopentadienyl rings, had been proposed several years previously by Robert Burns Woodward and, separately, by Ernst Otto Fischer. The structure helped explain puzzles about ferrocene's conformers. This result further demonstrated the power of X-ray crystallography and accelerated the growth of organometallic chemistry.[2][page needed]

Classes

(Cycloheptatrienyl)(cyclopentadienyl)titanium (troticene) is an unsymmetrical sandwich complex.[3]

The best known members are the metallocenes of the formula M(C5H5)2 where M = Cr, Fe, Co, Ni, Pb, Zr, Ru, Rh, Os, Sm, Ti, V, Mo, W, Zn. These species are also called bis(cyclopentadienyl)metal complexes. Other arenes can serve as ligands as well.

  • Mixed cyclopentadienyl complexes: M(C5H5)(CnHn). Some examples are Ti(C5H5)(C7H7) and (C60)Fe(C5H5Ph5) where the
    fullerene ligand
    is acting as a cyclopentadienyl analogue.
  • Bis(benzene) complexes: M(C6H6)2, the best known example being bis(benzene)chromium.
  • Bis(cyclooctatetraenyl) complexes: M(C8H8)2, such as U(C8H8)2 and Th(C8H8)2 (both actinocenes).
  • Metal–
    polyhedral cages ranging in size from 6 to 15 vertices. Examples include bis(dicarbollide) complexes,[4] such as [M(C2B9H11)2]z and [Fe(C2B9H11)2]2−, and small-carborane sandwiches such as (R2C2B3H5)M(C2B4H6) and (R5C5)M(R′2)C2B4H4) where M is a transition metal and R and R′ are methyl or ethyl.[5][6]

Structure of (Me4N+)2[Fe(C2B9H11)2]+, showing only one Me4N+.[4]

Closely related are the metal complexes containing H3C3B2R2 (diborolyl) ligands.[7] In addition to these, other sandwich complexes containing purely inorganic ligands are known, such as Fe(C5Me5)(P5) and [(P5)2Ti]2−.[8]

Half-sandwich compounds

Monometallic half-sandwich compounds

Ball-and-stick model of methylcyclopentadienyl manganese tricarbonyl, a "piano stool" compound

allyl.[9][10]

Dimetallic half-sandwich

Compounds such as the

cyclopentadienylmolybdenumtricarbonyl dimer can be considered a special case of half-sandwiches, except that they are dimetallic.[9]
A structurally related species is [Ru(C6H6)Cl2]2.

Multidecker sandwiches

The first isolated multidecker sandwich was the tris(cyclopentadienyl)dinickel triple-decker complex [Ni2Cp3]BF4, a highly air- and water-sensitive compound reported in 1972,[11] with X-ray crystallographic confirmation in 1974.[12]

In 1973 the electrically neutral air-stable triple-decker cobaltacarborane sandwiches 1,7,2,3- and 1,7,2,4-CpCo(RHC2B3H3)Cp (where R = H, Me) were isolated and characterized by multinuclear NMR and X-ray studies[13] (the structure of the 1,7,2,3 isomer is shown).

1,7,2,3-CpCo(MeC2B3H4)CoCp, the first structurally confirmed multidecker sandwich.[13]

Since then many three-, four-, five-, and six-decker sandwich complexes have been described.[14][15] The largest structurally characterized multidecker sandwich monomer is the hexadecker shown at lower right.[16]

A structurally characterized cobaltacarborane hexadecker.[16]

An extensive family of multidecker sandwiches incorporating planar (R2R′C3B2R″2)3− (diborolyl) ligands has also been prepared.[17]

Numerous multidecker sandwich compounds featuring hydrocarbon bridging rings have also been prepared, especially triple deckers.[18] A versatile method involves the attachment of Cp*Ru+ to preformed sandwich complexes.[19]

Linked sandwiches

Monomeric double-decker and multidecker sandwiches have been used as building blocks for extended systems, some of which exhibit electron delocalization between metal centers. An example of a cyclic poly(metallacarborane) complex is the octahedral "carbon-wired" system shown below, which contains a planar C16B8 macrocycle.[20]

Inverse sandwiches

In these anti-bimetallic compounds, the metals are found to be bridged by a single carbocyclic ring. Examples include [(THF)3Ca]2(1,3,5-triphenylbenzene)[21] and [(Ar)Sn]2COT.

Perylene–tetrapalladium sandwich complex

Double- and multimetallic sandwich compounds

Another family of sandwich compound involves more than one metal sandwiched between two carbocyclic rings. Examples of the double sandwich include V2(

tetraarylborates
.

Applications

Ferrocene and

(cymene)ruthenium dichloride dimer catalyse transfer hydrogenation, a useful reaction in organic synthesis.[25][non-primary source needed
]

References