Skin

Source: Wikipedia, the free encyclopedia.
(Redirected from
Skin cells
)
Skin
Elephant skin
Details
Identifiers
Latincutis
MeSHD012867
TA98A16.0.00.002
TA27041
Anatomical terminology

Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.

Other

os clitoris.[2]

All mammals have some hair on their skin, even marine mammals like whales, dolphins, and porpoises that appear to be hairless. The skin interfaces with the environment and is the first line of defense from external factors. For example, the skin plays a key role in protecting the body against pathogens[3] and excessive water loss.[4] Its other functions are insulation, temperature regulation, sensation, and the production of vitamin D folates. Severely damaged skin may heal by forming scar tissue. This is sometimes discoloured and depigmented. The thickness of skin also varies from location to location on an organism. In humans, for example, the skin located under the eyes and around the eyelids is the thinnest skin on the body at 0.5 mm thick and is one of the first areas to show signs of aging such as "crows feet" and wrinkles. The skin on the palms and the soles of the feet is the thickest skin on the body at 4 mm thick. The speed and quality of wound healing in skin is promoted by estrogen.[5][6][7]

Fur is dense hair.[8] Primarily, fur augments the insulation the skin provides but can also serve as a secondary sexual characteristic or as camouflage. On some animals, the skin is very hard and thick and can be processed to create leather. Reptiles and most fish have hard protective scales on their skin for protection, and birds have hard feathers, all made of tough beta-keratins. Amphibian skin is not a strong barrier, especially regarding the passage of chemicals via skin, and is often subject to osmosis and diffusive forces. For example, a frog sitting in an anesthetic solution would be sedated quickly as the chemical diffuses through its skin. Amphibian skin plays key roles in everyday survival and their ability to exploit a wide range of habitats and ecological conditions.[9]

On 11 January 2024, biologists reported the discovery of the oldest known skin, fossilized about 289 million years ago, and possibly the skin from an ancient reptile.[10][11]

Etymology

The word skin originally only referred to dressed and tanned animal hide and the usual word for human skin was hide. Skin is a borrowing from

Proto-Indo-European root *sek-, meaning "to cut" (probably a reference to the fact that in those times animal hide was commonly cut off to be used as garment).[12]

Structure in mammals

Dermis
The distribution of the blood vessels in the skin of the sole of the foot. (Corium – TA alternate term for dermis – is labeled at upper right.)
A diagrammatic sectional view of the skin (click on image to magnify). (Dermis labeled at center right.)
Identifiers
MeSHD012867
TA98A16.0.00.002
TA27041
Anatomical terminology

Mammalian skin is composed of two primary layers:

  • The epidermis, which provides waterproofing and serves as a barrier to infection.
  • The
    appendages
    of skin.

Epidermis

The epidermis is composed of the outermost layers of the skin. It forms a protective barrier over the body's surface, responsible for keeping water in the body and preventing

differentiated suprabasal keratinocytes
.

epidermis can be further subdivided into the following strata or layers (beginning with the outermost layer):[14]

lipids which contribute to the formation of an extracellular matrix and provide mechanical strength to the skin.[15] Keratinocytes from the stratum corneum are eventually shed from the surface (desquamation
).

The

capillaries extending to the upper layers of the dermis
.

Basement membrane

The

fibers called the basement membrane, which is made through the action of both tissues
. The basement membrane controls the traffic of the
physiological remodeling or repair processes.[16]

Dermis

The dermis is the layer of skin beneath the

hyaluronan, versican and decorin are present throughout the dermis and epidermis extracellular matrix, whereas biglycan and perlecan
are only found in the epidermis.

It harbors many

epidermis
.

Dermis and subcutaneous tissues are thought to contain germinative cells involved in formation of horns, osteoderm, and other extra-skeletal apparatus in mammals.[2]

The

epidermis through a basement membrane
and is structurally divided into two areas: a superficial area adjacent to the epidermis, called the papillary region, and a deep thicker area known as the reticular region.

Papillary region

The papillary region is composed of loose

epidermis. The papillae provide the dermis
with a "bumpy" surface that interdigitates with the epidermis, strengthening the connection between the two layers of skin.

Reticular region

The reticular region lies deep in the papillary region and is usually much thicker. It is composed of dense irregular

elastic, and reticular fibers that weave throughout it. These protein fibers give the dermis its properties of strength, extensibility, and elasticity
. Also located within the reticular region are the .

Subcutaneous tissue

The

body fat). Fat
serves as padding and insulation for the body.

urogenital
openings.

Detailed cross section

Skin layers, of both the hairy and hairless skin

Structure in fish, amphibians, birds, and reptiles

Fish

The epidermis of

denticles embedded in their skin, in place of true scales.[22]

glands in the skin, that secrete irritating or toxic compounds.[24]

Although

Amphibians

Overview

Amphibians possess two types of

cutaneous. Mucous and granular glands are both divided into three different sections which all connect to structure the gland as a whole. The three individual parts of the gland are the duct, the intercalary region, and lastly the alveolar gland (sac). Structurally, the duct is derived via keratinocytes and passes through to the surface of the epidermal or outer skin layer thus allowing external secretions of the body. The gland alveolus is a sac-shaped structure that is found on the bottom or base region of the granular gland. The cells in this sac specialize in secretion. Between the alveolar gland and the duct is the intercalary system which can be summed up as a transitional region connecting the duct to the grand alveolar beneath the epidermal skin layer. In general, granular glands are larger in size than the mucous glands, which are greater in number.[25]

Frog gland anatomy– A: Mucous gland (alveolus), B: Chromophore, C: Granular gland (alveolus), D: Connective tissue, E: Stratum corneum, F: Transition zone (intercalary region), G: Epidermis (where the duct resides), H: Dermis

Granular glands

Granular glands can be identified as venomous and often differ in the type of toxin as well as the concentrations of secretions across various orders and species within the amphibians. They are located in clusters differing in concentration depending on amphibian taxa. The toxins can be fatal to most vertebrates or have no effect against others. These glands are alveolar meaning they structurally have little sacs in which venom is produced and held before it is secreted upon defensive behaviors.[25]

Structurally, the ducts of the granular gland initially maintain a cylindrical shape. When the ducts mature and fill with fluid, the base of the ducts become swollen due to the pressure from the inside. This causes the epidermal layer to form a pit like opening on the surface of the duct in which the inner fluid will be secreted in an upwards fashion.[26]

The intercalary region of granular glands is more developed and mature in comparison with mucous glands. This region resides as a ring of cells surrounding the basal portion of the duct which are argued to have an ectodermal muscular nature due to their influence over the lumen (space inside the tube) of the duct with dilation and constriction functions during secretions. The cells are found radially around the duct and provide a distinct attachment site for muscle fibers around the gland's body.[26]

The gland alveolus is a sac that is divided into three specific regions/layers. The outer layer or tunica fibrosa is composed of densely packed connective-tissue which connects with fibers from the spongy intermediate layer where elastic fibers, as well as nerves, reside. The nerves send signals to the muscles as well as the epithelial layers. Lastly, the epithelium or tunica propria encloses the gland.[26]

Mucous glands

Mucous glands are non-venomous and offer a different functionality for amphibians than granular. Mucous glands cover the entire surface area of the amphibian body and specialize in keeping the body lubricated. There are many other functions of the mucous glands such as controlling the pH, thermoregulation, adhesive properties to the environment, anti-predator behaviors (slimy to the grasp), chemical communication, even anti-bacterial/viral properties for protection against pathogens.[25]

The ducts of the mucous gland appear as cylindrical vertical tubes that break through the epidermal layer to the surface of the skin. The cells lining the inside of the ducts are oriented with their longitudinal axis forming 90-degree angles surrounding the duct in a helical fashion.[26]

Intercalary cells react identically to those of granular glands but on a smaller scale. Among the amphibians, there are taxa which contain a modified intercalary region (depending on the function of the glands), yet the majority share the same structure.[26]

The alveolar or mucous glands are much more simple and only consist of an epithelium layer as well as connective tissue which forms a cover over the gland. This gland lacks a tunica propria and appears to have delicate and intricate fibers which pass over the gland's muscle and epithelial layers.[26]

Birds and reptiles