Soft tissue

Source: Wikipedia, the free encyclopedia.
Micrograph of a tendon. Hematoxylin and eosin stain.

Soft tissue is all the

 

It is sometimes defined by what it is not – such as "nonepithelial, extraskeletal

Composition

The characteristic substances inside the

chondroblasts, may also produce these substances.[4]

Mechanical characteristics

At small

nylon stocking, whose rubber band does the role of elastin as the nylon
does the role of collagen. In soft tissues, the collagen limits the deformation and protects the tissues from injury.

Human soft tissue is highly deformable, and its mechanical properties vary significantly from one person to another. Impact testing results showed that the stiffness and the damping resistance of a test subject's tissue are correlated with the mass, velocity, and size of the striking object. Such properties may be useful for forensics investigation when contusions were induced.[5] When a solid object impacts a human soft tissue, the energy of the impact will be absorbed by the tissues to reduce the effect of the impact or the pain level; subjects with more soft tissue thickness tended to absorb the impacts with less aversion.[6]

stretch ratio
(λ) of a preconditioned soft tissue.

Soft tissues have the potential to undergo large deformations and still return to the initial configuration when unloaded, i.e. they are

anisotropic. Some viscoelastic properties observable in soft tissues are: relaxation, creep and hysteresis.[7][8] In order to describe the mechanical response of soft tissues, several methods have been used. These methods include: hyperelastic macroscopic models based on strain energy, mathematical fits where nonlinear constitutive equations are used, and structurally based models where the response of a linear elastic material is modified by its geometric characteristics.[9]

Pseudoelasticity

Even though soft tissues have viscoelastic properties, i.e. stress as function of strain rate, it can be approximated by a hyperelastic model after precondition to a load pattern. After some cycles of loading and unloading the material, the mechanical response becomes independent of strain rate.

Despite the independence of strain rate, preconditioned soft tissues still present hysteresis, so the mechanical response can be modeled as hyperelastic with different material constants at loading and unloading. By this method the elasticity theory is used to model an inelastic material. Fung has called this model as pseudoelastic to point out that the material is not truly elastic.[8]

Residual stress

In physiological state soft tissues usually present

histologists must be aware of this fact to avoid mistakes when analyzing excised tissues. This retraction usually causes a visual artifact.[8]

Fung-elastic material

Fung developed a constitutive equation for preconditioned soft tissues which is

with

quadratic forms of Green-Lagrange strains and , and material constants.[8] is the strain energy function per volume unit, which is the mechanical strain energy for a given temperature.

Isotropic simplification

The Fung-model, simplified with isotropic hypothesis (same mechanical properties in all directions). This written in respect of the principal stretches ():

,

where a, b and c are constants.

Simplification for small and big stretches

For small strains, the exponential term is very small, thus negligible.

On the other hand, the linear term is negligible when the analysis rely only on big strains.

Gent-elastic material

where is the shear modulus for infinitesimal strains and is a stiffening parameter, associated with limiting chain extensibility.[10] This constitutive model cannot be stretched in uni-axial tension beyond a maximal stretch , which is the positive root of

Remodeling and growth

Soft tissues have the potential to grow and remodel reacting to chemical and mechanical long term changes. The rate the fibroblasts produce tropocollagen is proportional to these stimuli. Diseases, injuries and changes in the level of mechanical load may induce remodeling.[11][12] An example of this phenomenon is the thickening of farmer's hands. The remodeling of connective tissues is well known in bones by the Wolff's law (bone remodeling). Mechanobiology is the science that study the relation between stress and growth at cellular level.[7]

Growth and remodeling have a major role in the cause of some common soft tissue diseases, like arterial

aneurisms[13][14] and any soft tissue fibrosis. Other instance of tissue remodeling is the thickening of the cardiac muscle in response to the growth of blood pressure detected by the arterial
wall.

Imaging techniques

There are certain issues that have to be kept in mind when choosing an imaging technique for visualizing soft tissue extracellular matrix (ECM) components. The accuracy of the image analysis relies on the properties and the quality of the raw data and, therefore, the choice of the imaging technique must be based upon issues such as:

  1. Having an optimal resolution for the components of interest;
  2. Achieving high contrast of those components;
  3. Keeping the artifact count low;
  4. Having the option of volume data acquisition;
  5. Keeping the data volume low;
  6. Establishing an easy and reproducible setup for tissue analysis.

The collagen fibers are approximately 1-2 μm thick. Thus, the resolution of the imaging technique needs to be approximately 0.5 μm. Some techniques allow the direct acquisition of volume data while other need the slicing of the specimen. In both cases, the volume that is extracted must be able to follow the fiber bundles across the volume. High contrast makes

formalin causes shrinkage, altering the structure of the original tissue. Some typical values of contraction for different fixation are: formalin (5% - 10%), alcohol (10%), bouin (<5%).[15]

Imaging methods used in ECM visualization and their properties.[15][16]

Transmission Light

Confocal

Multi-Photon Excitation Fluorescence

Second Harmonic Generation

Optical coherence tomography

Resolution

0.25 μm

Axial: 0.25-0.5 μm

Lateral: 1 μm

Axial: 0.5 μm

Lateral: 1 μm

Axial: 0.5 μm

Lateral: 1 μm

Axial: 3-15 μm

Lateral: 1-15 μm

Contrast

Very High

Low

High

High

Moderate

Penetration

N/A

10 μm-300 μm

100-1000 μm

100-1000 μm

Up to 2–3 mm

Image stack cost

High

Low

Low

Low

Low

Fixation

Required

Required

Not required

Not required

Not required

Embedding

Required

Required

Not required

Not required

Not required

Staining

Required

Not required

Not required

Not required

Not required

Cost

Low

Moderate to high

High

High

Moderate

Clinical significance

Soft tissue disorders are medical conditions affecting soft tissue.

Soft tissue injuries
are some of the most chronically painful and difficult conditions to treat because it is very difficult to see what is going on under the skin with the soft connective tissues, fascia, joints, muscles and tendons.

Musculoskeletal specialists, manual therapists and neuromuscular physiologists and neurologists specialize in treating injuries and ailments in the soft tissue areas of the body. These specialized clinicians often develop innovative ways to manipulate the soft tissue to speed natural healing and relieve the mysterious pain that often accompanies soft tissue injuries. This area of expertise has become known as

soft tissue therapy
and is rapidly expanding as technology continues to improve the ability of these specialists to identify problem areas.

A promising new method of treating wounds and soft tissue injuries is via platelet-derived growth factor.[17]

There is a close overlap between the term "soft tissue disorder" and rheumatism. Sometimes the term "soft tissue rheumatic disorders" is used to describe these conditions.[18]

Soft tissue sarcomas are many types of cancer
that can develop in the soft tissues.

See also

References

  1. ^ a b "Soft tissue". Retrieved 13 July 2020.
  2. ^ "Soft Tissue". NCI Dictionaries. at National Cancer Institute.
  3. .
  4. .
  5. .
  6. .
  7. ^ .
  8. ^ .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. ^ .
  16. .
  17. .
  18. ^ Meleger AL (June 2022). Isaac Z, Case SM (eds.). "Overview of soft tissue rheumatic disorders". UpToDate.

External links