Taurus (constellation)

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.
Taurus
Constellation
Taurus
AbbreviationTauri[1]
GenitiveTauri[1]
Pronunciation/ˈtɔːrəs/ TOR-əs;
genitive
17th)
Main stars19
Bayer/Flamsteed
stars
132
Stars with planets9 candidates[a]
Stars brighter than 3.00m4
Stars within 10.00 pc (32.62 ly)1[b]
Brightest starAldebaran (α Tau) (0.85m)
Messier objects2
Meteor showers
Bordering
constellations
Visible at latitudes between +90° and −65°.
Best visible at 21:00 (9 p.m.) during the month of January.

Taurus (

Assyria, Babylon, Egypt, Greece, and Rome. Its old astronomical symbol is
(♉︎), which resembles a bull's head.

A number of features exist that are of interest to astronomers. Taurus hosts two of the nearest

pulsar. One of the closest regions of active star formation, the Taurus-Auriga complex, crosses into the northern part of the constellation. The variable star T Tauri is the prototype of a class of pre-main-sequence stars
.

Characteristics

Taurus is a large and prominent constellation in the

northern hemisphere's winter sky, between Aries to the west and Gemini to the east; to the north lies Perseus and Auriga, to the southeast Orion, to the south Eridanus, and to the southwest Cetus. In late November-early December, Taurus reaches opposition (furthest point from the Sun) and is visible the entire night. By late March, it is setting at sunset and completely disappears behind the Sun's glare from May to July.[4]

This constellation forms part of the zodiac and hence is intersected by the

Gould's Belt passes through the constellation.[5]

The recommended three-letter abbreviation for the constellation, as adopted by the

Features

Stars

The constellation Taurus as it can be seen by the naked eye.[9] The constellation lines have been added for clarity.

There are four stars above magnitude 3 in Taurus.

The brightest member of this constellation is Aldebaran, an orange-hued,

Ursa Major Moving Group.[15] In this profile, Aldebaran forms the bull's bloodshot eye, which has been described as "glaring menacingly at the hunter Orion",[16] a constellation that lies just to the southeast. Aldebaran has around 116% the mass of the Sun.[17] It also hosts a candidate exoplanet.[17]

The Hyades span about 5° of the sky, so that they can only be viewed in their entirety with binoculars or the unaided eye.

T Tauri variable star
and triple system

In the northwestern quadrant of the Taurus constellation lie the Pleiades (M45), one of the best known open clusters, easily visible to the naked eye. The seven most prominent stars in this cluster are at least visual magnitude six, and so the cluster is also named the "Seven Sisters". However, many more stars are visible with even a modest telescope.[21] Astronomers estimate that the cluster has approximately 500–1,000 stars, all of which are around 100 million years old. However, they vary considerably in type. The Pleiades themselves are represented by large, bright stars; also many small brown dwarfs and white dwarfs exist. The cluster is estimated to dissipate in another 250 million years.[22] The Pleiades cluster is classified as a Shapley class c and Trumpler class I 3 r n cluster, indicating that it is irregularly shaped and loose, though concentrated at its center and detached from the star-field.[23]

To the east, the two horns of the bull are formed by

eclipsing binary star that completes an orbit every 133 days.[10]

The star

plane of their orbit lies almost along the line of sight to the Earth. Every 3.953 days the system temporarily decreases in brightness by 1.1 magnitudes as the brighter star is partially eclipsed by the dimmer companion. The two stars are separated by only 0.1 astronomical units, so their shapes are modified by mutual tidal interaction. This results in a variation of their net magnitude throughout each orbit.[25]

Central area of constellation Taurus, showing Aldebaran at the lower left.

Located about 1.8° west of

magnitude 9 to 13 over a period of weeks or months.[4] This is a newly formed stellar object that is just emerging from its envelope of gas and dust, but has not yet become a main sequence star.[26] The surrounding reflection nebula NGC 1555 is illuminated by T Tauri, and thus is also variable in luminosity.[27] To the north lies Kappa Tauri, a visual double star consisting of two A7-type components. The pair have a separation of just 5.6 arc minutes, making them a challenge to split with the naked eye.[28]

Brightest Stars of Taurus
Proper Name Bayer Designation Light Years Apparent Magnitude
Aldebaran α Tauri 65 0.87
Elnath β Tauri 131 1.65
Prima Hyadum γ Tauri 154 3.65
Secunda Hyadum δ Tauri 153 3.77
Ain ε Tauri 155 3.53
Tianguan ζ Tauri 417 2.97
Chamukuy θ Tauri 149 3.40
Sadr al Tauri λ Tauri 370 3.41

Deep-sky objects

In the northern part of the constellation to the northeast of the Pleiades lies the Crystal Ball Nebula, known by its catalogue designation of NGC 1514. This planetary nebula is of historical interest following its discovery by German-born English astronomer William Herschel in 1790. Prior to that time, astronomers had assumed that nebulae were simply unresolved groups of stars. However, Herschel could clearly resolve a star at the center of the nebula that was surrounded by a nebulous cloud of some type. In 1864, English astronomer William Huggins used the spectrum of this nebula to deduce that the nebula is a luminous gas, rather than stars.[29]

Brightest NGC objects in Taurus[30]
Identifier
Mag.
Object type
NGC 1514 10.9 planetary nebula
NGC 1647 6.4 open cluster
NGC 1746 6 asterism[31]
NGC 1817 7.7 open cluster
NGC 1952
8.4 supernova remnant (M1)

North-west of ζ Tauri by 1.15 degrees is the Crab Nebula (M1), a supernova remnant. This expanding nebula was created by a Type II supernova explosion, which was seen from Earth on July 4, 1054. It was bright enough to be observed during the day and is mentioned in Chinese historical texts. At its peak, the supernova reached magnitude −4, but the nebula is currently magnitude 8.4 and requires a telescope to observe.[32][33] North American peoples also observed the supernova, as evidenced from a painting on a New Mexican canyon and various pieces of pottery that depict the event. However, the remnant itself was not discovered until 1731, when John Bevis found it.[22]

IRAS 05437+2502, a nebula

This constellation includes part of the Taurus-Auriga complex, or Taurus dark clouds, a star-forming region containing sparse, filamentary clouds of gas and dust. This spans a diameter of 98

arcminutes.[31]

Meteor showers

During November, the

Southern Taurids are active; though the latter stream is stronger.[37] However, between November 1 and 10, the two streams equalize.[37]

History and mythology

The identification of the

University of Munich believes that Taurus is represented in a cave painting at the Hall of the Bulls in the caves at Lascaux (dated to roughly 15,000 BC), which he believes is accompanied by a depiction of the Pleiades.[38][39] The name "seven sisters" has been used for the Pleiades in the languages of many cultures, including indigenous groups of Australia, North America and Siberia. This suggests that the name may have a common ancient origin.[40]

Taurus marked the point of

Early Bronze Age, from about 4000 BC to 1700 BC, after which it moved into the neighboring constellation Aries.[41] The Pleiades were closest to the Sun at vernal equinox around the 23rd century BC. In Babylonian astronomy, the constellation was listed in the MUL.APIN as GU4.AN.NA, "The Bull of Heaven".[42] Although it has been claimed that "when the Babylonians first set up their zodiac, the vernal equinox lay in Taurus,"[43] there is a claim that the MUL.APIN tablets indicate[42] that the vernal equinox was marked by the Babylonian constellation known as "the hired man" (the modern Aries).[44]

In the

Sumerian goddess of sexual love, fertility, and warfare. One of the oldest depictions shows the bull standing before the goddess' standard; since it has 3 stars depicted on its back (the cuneiform sign for "star-constellation"), there is good reason to regard this as the constellation later known as Taurus.[47]

The same iconic representation of the Heavenly Bull was depicted in the

celestial hemisphere using a planisphere. In these ancient cultures, the orientation of the horns was portrayed as upward or backward. This differed from the later Greek depiction where the horns pointed forward.[48] To the Egyptians, the constellation Taurus was a sacred bull that was associated with the renewal of life in spring. When the spring equinox entered Taurus, the constellation would become covered by the Sun in the western sky as spring began. This "sacrifice" led to the renewal of the land.[49] To the early Hebrews, Taurus was the first constellation in their zodiac and consequently it was represented by the first letter in their alphabet, Aleph.[50]

In

Taurus became an important object of worship among the Druids. Their Tauric religious festival was held while the Sun passed through the constellation.[41] Among the arctic people known as the Inuit, the constellation is called Sakiattiat and the Hyades is Nanurjuk, with the latter representing the spirit of the polar bear. Aldebaran represents the bear, with the remainder of the stars in the Hyades being dogs that are holding the beast at bay.[53]

In

Vesākha, which occurs on the first or second full moon when the Sun is in Taurus.[55]

In 1990, due to the

precession of the equinoxes, the position of the Sun on the first day of summer (June 21) crossed the IAU boundary of Gemini into Taurus.[56] The Sun will slowly move through Taurus at a rate of 1° east every 72 years until approximately 2600 AD, at which point it will be in Aries on the first day of summer[citation needed
].

Astrology

As of 2008, the Sun appears in the constellation Taurus from May 13 to June 21.

tropical astrology, the Sun is considered to be in the sign Taurus from April 20 to May 20.[58]

Space exploration

The

space probe Pioneer 10 is moving in the direction of this constellation, though it will not be nearing any of the stars in this constellation for many thousands of years, by which time its batteries will be long dead.[59]

Solar eclipse of May 29, 1919

Several stars in the Hyades star cluster, including

general theory of relativity which he published in 1915.[60]

See also

Notes

  1. HD 285507, HL Tauri, and FW Tauri
    .
  2. ^ This is Gliese 176.

References

  1. ^ a b c d "The constellations". IAU. Retrieved 2010-02-09.
  2. ^ "Taurus". Merriam-Webster Online. Retrieved 2010-02-09.
  3. ^
    S2CID 122459258
    .
  4. ^ .
  5. .
  6. .
  7. ^ "Taurus, constellation boundary". The Constellations. International Astronomical Union. Retrieved 2012-01-02.
  8. .
  9. ^ "Taurus, the bull". Allthesky.com. Retrieved 2012-05-16.
  10. ^ .
  11. ^ Chartrand 1983, p. 188.
  12. .
  13. ^ Allen 1963, p. 383.
  14. . Retrieved 2009-06-30.
  15. .
  16. .
  17. ^ .
  18. ^ Ridpath & Tirion 2003, p. 55.
  19. ^ a b "Naming Stars". IAU.org. Retrieved 8 August 2018.
  20. ^ Kaler, James B. "Theta-1 Tauri". Stars. University of Illinois. Retrieved 2012-05-22.
  21. .
  22. ^ .
  23. ^ Levy 2005, p. 94.
  24. ^ Chartrand 1983, p. 184.
  25. .
  26. .
  27. ^ "T Tauri in NGC 1555". National Optical Astronomy Observatory. Retrieved 2009-08-16.
  28. ^ O'Meara 2011, p. 475.
  29. ^ O'Meara 2011, pp. 74–77.
  30. .
  31. ^ a b O'Meara 2011, p. 84.
  32. .
  33. .
  34. .
  35. .
  36. .
  37. ^ a b Jenniskens, Peter (September 2012). "Mapping Meteoroid Orbits: New Meteor Showers Discovered". Sky & Telescope: 22.
  38. ].
  39. ^ Whitehouse, David (August 9, 2000). "Ice age star map discovered". BBC. Retrieved 2009-10-11.
  40. .
  41. ^ .
  42. ^ .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. ^ Allen 1963, p. 381.
  51. .
  52. .
  53. .
  54. ^ Grünwedel, Albert (1901). Burgess, James (ed.). Buddhist art in India. Agnes C. Gibson. B. Quaritch. p. 131.
  55. ]
  56. .
  57. .
  58. .
  59. ^ Mewhinney, Michael (February 25, 2003), Pioneer 10 Spacecraft Sends Last Signal, NASA, archived from the original on 2012-06-28, retrieved 2015-11-04.
  60. .

Book references

External links