Complement factor I

Source: Wikipedia, the free encyclopedia.
CFI
Available structures
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_000204
NM_001318057
NM_001331035

NM_007686
NM_001329552

RefSeq (protein)

NP_001316481
NP_031712

Location (UCSC)Chr 4: 109.74 – 109.8 MbChr 3: 129.63 – 129.67 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Complement factor I, also known as C3b/C4b inactivator, is a protein that in humans is encoded by the CFI gene. Complement factor I (factor I) is a protein of the complement system, first isolated in 1966 in guinea pig serum,[5] that regulates complement activation by cleaving cell-bound or fluid phase C3b and C4b.[6] It is a soluble glycoprotein that circulates in human blood at an average concentration of 35 μg/mL.[7]

Synthesis

The

disulfide-linked dimer of heavy chain (residues 19-335, 51 kDalton) and light chain (residues 340-583, 37 kDalton).[13]
Only the mature protein is active.

Structure

Factor I is a glycoprotein

heterodimer consisting of a disulfide linked heavy chain and light chain.[14]

The factor I heavy chain has four

substrate (either C3b or C4b) and a cofactor protein (Factor H, C4b-binding protein, complement receptor 1, and membrane cofactor protein).[16] Upon binding of the enzyme to the substrate:cofactor complex, the heavy:light chain interface is disrupted, and the enzyme activated by allostery.[16]
The LDL-receptor domains contain one Calcium-binding site each.

The factor I light chain contains only the serine protease domain. This domain contains the catalytic triad His-362, Asp-411, and Ser-507, which is responsible for specific cleavage of C3b and C4b.[15] Conventional protease inhibitors do not completely inactivate Factor I[17] but they can do so if the enzyme is pre-incubated with its substrate: this supports the proposed rearrangement of the molecule upon binding to the substrate.

Both heavy and light chains bear

glycans, on three distinct glycosylation
sites each.

Crystal structure the crystal structure of human Factor I has been deposited as PDB: 2XRC.

Clinical significance

Dysregulated factor I activity has clinical implications. Loss of function mutations in the Complement Factor I gene lead to low levels of factor I which results in increased complement activity. Factor I deficiency in turn leads to low levels of

factor H and properdin in blood, due to unregulated activation of C3 convertase, and to low levels of IgG, due to loss of iC3b
and C3dg production. In addition to the following diseases, low factor I is associated with recurrent bacterial infections in children.

Age-related macular degeneration

Research suggests that mutations in the CFI gene contribute to development of

age-related macular degeneration.[18] This contribution is thought to be due to the dysregulation of the alternative pathway, leading to increased inflammation in the eye.[19]

Atypical hemolytic uremic syndrome

Heterozygous mutations in the serine protease domain of the CFI gene account for 5-10% of cases.[20]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000205403Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000058952Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 5960883
    .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ "FURIN furin, paired basic amino acid cleaving enzyme [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-03-30.
  14. ^ "CFI complement factor I [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-03-27.
  15. ^
    PMID 22393059
    .
  16. ^ .
  17. .
  18. .
  19. .
  20. ^ .

Further reading

External links