Discrete geometry

Source: Wikipedia, the free encyclopedia.
A collection of circles and the corresponding unit disk graph

Discrete geometry and combinatorial geometry are branches of

planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect
one another, or how they may be arranged to cover a larger object.

Discrete geometry has a large overlap with

.

History

Although

Hadwiger
.

László Fejes Tóth, H.S.M. Coxeter, and Paul Erdős laid the foundations of discrete geometry.[1][2][3]

Topics

Polyhedra and polytopes

A polytope is a geometric object with flat sides, which exists in any general number of dimensions. A polygon is a polytope in two dimensions, a polyhedron in three dimensions, and so on in higher dimensions (such as a 4-polytope in four dimensions). Some theories further generalize the idea to include such objects as unbounded polytopes (apeirotopes and tessellations), and abstract polytopes.

The following are some of the aspects of polytopes studied in discrete geometry:

Packings, coverings and tilings

Packings, coverings, and tilings are all ways of arranging uniform objects (typically circles, spheres, or tiles) in a regular way on a surface or manifold.

A sphere packing is an arrangement of non-overlapping

hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space
.

A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions.

Specific topics in this area include:

Structural rigidity and flexibility

Graphs are drawn as rods connected by rotating hinges. The cycle graph C4 drawn as a square can be tilted over by the blue force into a parallelogram, so it is a flexible graph. K3, drawn as a triangle, cannot be altered by any force that is applied to it, so it is a rigid graph.

Structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges.

Topics in this area include:

Incidence structures

Seven points are elements of seven lines in the Fano plane, an example of an incidence structure.

Incidence structures generalize planes (such as affine, projective, and Möbius planes) as can be seen from their axiomatic definitions. Incidence structures also generalize the higher-dimensional analogs and the finite structures are sometimes called finite geometries.

Formally, an incidence structure is a triple

where P is a set of "points", L is a set of "lines" and is the incidence relation. The elements of are called flags. If

we say that point p "lies on" line .

Topics in this area include:

Oriented matroids

An oriented matroid is a mathematical structure that abstracts the properties of directed graphs and of arrangements of vectors in a vector space over an ordered field (particularly for partially ordered vector spaces).[4] In comparison, an ordinary (i.e., non-oriented) matroid abstracts the dependence properties that are common both to graphs, which are not necessarily directed, and to arrangements of vectors over fields, which are not necessarily ordered.[5][6]

Geometric graph theory

A geometric graph is a

visibility graphs
.

Topics in this area include:

Simplicial complexes

A simplicial complex is a topological space of a certain kind, constructed by "gluing together" points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. See also random geometric complexes.

Topological combinatorics

The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology.

In 1978, the situation was reversed – methods from algebraic topology were used to solve a problem in

Borsuk-Ulam theorem and this theorem retains a prominent role in this new field. This theorem has many equivalent versions and analogs and has been used in the study of fair division
problems.

Topics in this area include:

Lattices and discrete groups

A discrete group is a

reals, R (with the standard metric topology), but the rational numbers
, Q, do not.

A lattice in a

initiated the study of tree lattices, which remains an active research area.

Topics in this area include:

Digital geometry

Digital geometry deals with

digitized models or images of objects of the 2D or 3D Euclidean space
.

Simply put, digitizing is replacing an object by a discrete set of its points. The images we see on the TV screen, the raster display of a computer, or in newspapers are in fact digital images.

Its main application areas are computer graphics and image analysis.[7]

Discrete differential geometry

Discrete differential geometry is the study of discrete counterparts of notions in

simplicial complexes. It is used in the study of computer graphics and topological combinatorics
.

Topics in this area include:

See also

Notes

  1. ^ Pach, János; et al. (2008), Intuitive Geometry, in Memoriam László Fejes Tóth, Alfréd Rényi Institute of Mathematics
  2. ^ Katona, G. O. H. (2005), "Laszlo Fejes Toth – Obituary", Studia Scientiarum Mathematicarum Hungarica, 42 (2): 113
  3. ^
  4. Rockafellar
    1969. Björner et alia, Chapters 1-3. Bokowski, Chapter 1. Ziegler, Chapter 7.
  5. ^ Björner et alia, Chapters 1-3. Bokowski, Chapters 1-4.
  6. linear optimization
    by Nering and Tucker, which is infused with oriented-matroid ideas, and then to proceed to Ziegler's lectures on polytopes.
  7. ^ See Li Chen, Digital and discrete geometry: Theory and Algorithms, Springer, 2014.

References