Timeline of mathematics

Source: Wikipedia, the free encyclopedia.

This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.

Rhetorical stage

Before 1000 BC

Syncopated stage

1st millennium BC

1st millennium AD

  • 1st century – Greece,
    Heron of Alexandria
    , Hero, the earliest, fleeting reference to square roots of negative numbers.
  • c 100 – Greece, Theon of Smyrna
  • 60 – 120 – Greece, Nicomachus
  • 70 – 140 – Greece, Menelaus of Alexandria Spherical trigonometry
  • 78 – 139 – China, Zhang Heng
  • c. 2nd century – Greece, Ptolemy of Alexandria wrote the Almagest.
  • 132 – 192 – China, Cai Yong
  • 240 – 300 – Greece, Sporus of Nicaea
  • 250 – Greece, Diophantus uses symbols for unknown numbers in terms of syncopated algebra, and writes Arithmetica, one of the earliest treatises on algebra.
  • 263 – China, Liu Hui computes π using Liu Hui's π algorithm.
  • 300 – the earliest known use of
    Indian mathematicians
    .
  • 234 – 305 – Greece, Porphyry (philosopher)
  • 300 – 360 – Greece, Serenus of Antinoöpolis
  • 335 – 405– Greece, Theon of Alexandria
  • c. 340 – Greece, Pappus of Alexandria states his hexagon theorem and his centroid theorem.
  • 350 – 415 – Byzantine Empire, Hypatia
  • c. 400 – India, the
    square roots
    of numbers as large as a million correct to at least 11 decimal places.
  • 300 to 500 – the
    Sun Tzu
    .
  • 300 to 500 – China, a description of
    Sun Tzu
    .
  • 412 – 485 – Greece, Proclus
  • 420 – 480 – Greece, Domninus of Larissa
  • b 440 – Greece, Marinus of Neapolis "I wish everything was mathematics."
  • 450 – China, Zu Chongzhi computes π to seven decimal places. This calculation remains the most accurate calculation for π for close to a thousand years.
  • c. 474 – 558 – Greece, Anthemius of Tralles
  • 500 – India,
    earliest tables of sine
    and cosine values (in 3.75-degree intervals from 0 to 90 degrees).
  • 480 – 540 – Greece, Eutocius of Ascalon
  • 490 – 560 – Greece, Simplicius of Cilicia
  • 6th century – Aryabhata gives accurate calculations for astronomical constants, such as the
    linear equations
    by a method equivalent to the modern method.
  • 505 – 587 – India, Varāhamihira
  • 6th century – India, Yativṛṣabha
  • 535 – 566 – China, Zhen Luan
  • 550 –
    Indian numeral
    system.
  • 600 – China, Liu Zhuo uses quadratic interpolation.
  • 602 – 670 – China, Li Chunfeng
  • 625 China, Wang Xiaotong writes the Jigu Suanjing, where cubic and quartic equations are solved.
  • 7th century – India, Bhāskara I gives a rational approximation of the sine function.
  • 7th century – India, Brahmagupta invents the method of solving indeterminate equations of the second degree and is the first to use algebra to solve astronomical problems. He also develops methods for calculations of the motions and places of various planets, their rising and setting, conjunctions, and the calculation of eclipses of the sun and the moon.
  • 628 – Brahmagupta writes the
    negative and positive numbers, methods for computing square roots, methods of solving linear and quadratic equations, and rules for summing series, Brahmagupta's identity, and the Brahmagupta theorem
    .
  • 721 – China, Zhang Sui (Yi Xing) computes the first tangent table.
  • 8th century – India, Virasena gives explicit rules for the Fibonacci sequence, gives the derivation of the volume of a frustum using an infinite procedure, and also deals with the logarithm to base 2 and knows its laws.
  • 8th century – India, Sridhara gives the rule for finding the volume of a sphere and also the formula for solving quadratic equations.
  • 773 – Iraq, Kanka brings Brahmagupta's Brahma-sphuta-siddhanta to Baghdad to explain the Indian system of arithmetic astronomy and the Indian numeral system.
  • 773 – Muḥammad ibn Ibrāhīm al-Fazārī translates the Brahma-sphuta-siddhanta into Arabic upon the request of King Khalif Abbasid Al Mansoor.
  • 9th century – India,
    sines
    .
  • 810 – The House of Wisdom is built in Baghdad for the translation of Greek and Sanskrit mathematical works into Arabic.
  • 820 –
    Al-Jabr, later transliterated as Algebra, which introduces systematic algebraic techniques for solving linear and quadratic equations. Translations of his book on arithmetic will introduce the Hindu–Arabic decimal number system to the Western world in the 12th century. The term algorithm
    is also named after him.
  • 820 – Iran, Al-Mahani conceived the idea of reducing geometrical problems such as doubling the cube to problems in algebra.
  • c. 850 – Iraq, al-Kindi pioneers cryptanalysis and frequency analysis in his book on cryptography.
  • c. 850 – India, Mahāvīra writes the Gaṇitasārasan̄graha otherwise known as the Ganita Sara Samgraha which gives systematic rules for expressing a fraction as the sum of unit fractions.
  • 895 – Syria,
    amicable numbers
    can be found, (i.e., two numbers such that each is the sum of the proper divisors of the other).
  • c. 900 – Egypt, Abu Kamil had begun to understand what we would write in symbols as
  • 940 – Iran,
    roots
    using the Indian numeral system.
  • 953 – The arithmetic of the Hindu–Arabic numeral system at first required the use of a dust board (a sort of handheld blackboard) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded." Al-Uqlidisi modified these methods for pen and paper use. Eventually the advances enabled by the decimal system led to its standard use throughout the region and the world.
  • 953 – Persia, Al-Karaji is the "first person to completely free algebra from geometrical operations and to replace them with the arithmetical type of operations which are at the core of algebra today. He was first to define the monomials , , , ... and , , , ... and to give rules for
    exponents, which "was a major factor in the development of numerical analysis
    based on the decimal system".
  • 975 – Mesopotamia, al-Battani extended the Indian concepts of sine and cosine to other trigonometrical ratios, like tangent, secant and their inverse functions. Derived the formulae: and .

Symbolic stage

1000–1500

15th century

Modern

16th century

17th century

18th century

19th century

Contemporary

20th century

[21]

21st century

See also

References

  1. ^ Art Prehistory, Sean Henahan, January 10, 2002. Archived July 19, 2008, at the Wayback Machine
  2. ^ How Menstruation Created Mathematics, Tacoma Community College, (archive link).
  3. ^ "OLDEST Mathematical Object is in Swaziland". Retrieved March 15, 2015.
  4. ^ "an old Mathematical Object". Retrieved March 15, 2015.
  5. ^ a b "Egyptian Mathematical Papyri - Mathematicians of the African Diaspora". Retrieved March 15, 2015.
  6. ISBN 978-0-691-09541-7, archived from the original
    on August 5, 2010, retrieved November 28, 2010
  7. . Retrieved March 8, 2008.
  8. ^ Carl B. Boyer, A History of Mathematics, 2nd Ed.
  9. .
  10. . Retrieved July 6, 2014.
  11. .
  12. ^ F. Woepcke (1853). Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi. Paris.
  13. ^ O'Connor, John J.; Robertson, Edmund F., "Abu l'Hasan Ali ibn Ahmad Al-Nasawi", MacTutor History of Mathematics Archive, University of St Andrews
  14. ^
    MacTutor History of Mathematics archive, University of St Andrews
    , Scotland
  15. ^ a b Various AP Lists and Statistics Archived July 28, 2012, at the Wayback Machine
  16. ^ Weisstein, Eric W. "Taylor Series". mathworld.wolfram.com. Retrieved November 3, 2022.
  17. S2CID 4088442
    .
  18. ^ Saeed, Mehreen (August 19, 2021). "A Gentle Introduction to Taylor Series". Machine Learning Mastery. Retrieved November 3, 2022.
  19. ^ D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord [string] forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 214-219.
  20. ^ "Sophie Germain and FLT".
  21. ^ "UNH Mathematician's Proof Is Breakthrough Toward Centuries-Old Problem". University of New Hampshire. May 1, 2013. Retrieved May 20, 2013.
  22. Google Code
    .
  23. ^ Team announces construction of a formal computer-verified proof of the Kepler conjecture. August 13, 2014 by Bob Yirk.
  24. ^ Proof confirmed of 400-year-old fruit-stacking problem, 12 August 2014; New Scientist.
  25. ^ A formal proof of the Kepler conjecture, arXiv.
  26. ^ Solved: 400-Year-Old Maths Theory Finally Proven. Sky News, 16:39, UK, Tuesday 12 August 2014.
  • David Eugene Smith, 1929 and 1959, A Source Book in Mathematics, .

External links