Genetic studies on Croats

Source: Wikipedia, the free encyclopedia.

migration period, according to mtDNA have genetic diversity which fits within a broader European maternal genetic landscape, and overall have a uniformity with other South Slavs from the territory of former Yugoslavia
.

There are many Paleolithic period sites located in the territory of Croatia, mostly ascribed to the Mousterian phase in the Middle Paleolithic period. In the Neolithic period in Southeast Europe were founded major cultures like Vinča, Varna, Starčevo. In the Bronze Age happened symbiosis between Proto-Indo-Europeans of Kurgan culture and autochthonous populations, leading to the formation among others also of Proto-Illyrians. They gradually mixed and were assimilated by the Romans, Celts, Ostrogoths, and finally Early Slavs since the late 6th century.

Y chromosome DNA

Ancient Y-DNA and atDNA

PCA and Admixture of the Copper Age Potočani individuals with PCA of other Neolithic & Bronze & Iron Age samples compared to present-day Croats, per Novak, Olalde, Ringbauer et al. 2021.
West Eurasian PCA's, Admixture and genetic affinities of ancient and modern Croatian genomes, per Freilich, Ringbauer, Los et al. 2021.

In the 2014 study, of the three successfully generated SNP profiles of Neolithic Starčevo culture samples from Vinkovci, two belonged to Y-DNA haplogroup G2a-P15 and one to I2a1-P37.2, which could indicate G2a as potential representatives of the spread of farming from the Near East to Europe, while I2a as Mesolithic substratum in Europe.[1] In the 2018 study, 10 out of 17 samples from Croatia had a successful Y-DNA sequencing; two Croatia Cardial Neolithic (6005–5786 BCE) samples from Zemunica Cave belonged to C1a2 and E1b1b1a1b1, Early-Neolithic Starčevo culture (5837–5659 BCE) from Beli Manastir-Popova zemlja to C, Early-Neolithic Croatia Impressa culture (5641–5560 BCE) from Kargadur to G2a2a1, two Middle-Neolithic Sopot culture (5207–4546 BCE) samples from Osijek to G2a2a1 and J2a1, Late-Neolithic Sopot (4790–4558 BCE) from Beli Manastir-Popova zemlja to I, two Vučedol culture (2884–2582 BCE) samples from Beli Manastir-Popova zemlja and Vučedol Tell to R1b1a1a2a2 and G2a2a1a2a, and the Early-Middle Bronze Age (1631–1521 BCE) sample from Veliki Vanik belonged to J2b2a.[2]

In 2019 were autosomally analyzed three 5th century individuals with artificial cranial deformation from Osijek, probably of Hunnic or Germanic origin. According to Principal component analysis and Admixture methods, one of them had East/Northeast Asian, another European/Caucasian and third Near Middle Eastern/North African ancestry.[3]

In the 2021, was made a genome-wide analysis on 38 out of 41 individuals from the 6200 years old massacre at village

Copper Age Lasinja culture, and autosomally 70% of them were not in close kinship implying "a community composed of many family groups". According to Admixture and PCA it revealed "that the analyzed individuals are slightly shifted from the Anatolia Neolithic cluster in the direction of Western European hunter-gatherers, similar to other Middle to Late Neolithic European farmers before the arrival of [Western] steppe ancestry", as on average had approximately 91% Anatolian Neolithic Farmers (ANF) and 9% Western Hunter-Gatherer (WHG)-related ancestry, being very distant from modern Croats. Among them were present "paternal lineages typical of Balkan Neolithic populations (eleven G2a2, two I2a1a(xI2a1a2), one I2a2, C and C1a2-V20)".[6]

In the same year were analyzed additional 19 Middle Neolithic of Sopot culture, 1 Copper Age and 1 Roman age sample from Beli Manastir-Popova zemlja as well as 7 Bronze Age samples of

Liburni), finding that their paternal lineage almost exclusively belonged to the J2b-L283 haplogroup.[2][9][10]

A 2022

medieval Slavic migrations "profoundly affected the region", resulting in the reduction of Anatolian Neolithic ancestry in Southeastern Europe. Pre-Slavic Balkan populations have the most of the Anatolian Neolithic component of ancestry, whereas present-day Slavs outside the Balkans have the least, "with present-day people from Southeastern Europe", including Croats, "intermediate between the two extremes", with Greeks and Albanians having the most while Croats and Hungarians the least.[11] A 2023 archaeogenetic study published in Cell confirmed that the spread of Slavic language and identity was because of large movements of people of both males and females with specific Eastern European ancestry and that "more than half of the ancestry of most peoples in the Balkans today comes from the Slavic migrations, with around a third Slavic ancestry even in countries like Greece where no Slavic languages are spoken today".[12][13] The pre-Slavic period population of Croatia and the region had Y-DNA haplogroups E-V13, R1b, J2b, J2a, G2a while with Slavic migration arrived R1a-Z282 and I2a-L621 among others.[13]

Contemporary Y-DNA

G (1%[17]). According to recent and more extensive studies published between 2012 and 2022, a majority (65%) of male Croats from Croatia belongs to haplogroups I2 (39%-40%) and R1a (22%-24%), while a minority (35%) belongs to haplogroups E (10%), R1b (6%-7%), J (6%-7%), I1 (5-8%), G (2%), Q (0-1.93%), H (0-1.8%), T (0.6%), N (0-0.6%) and L (0.2%).[18][19]

The approximate frequency and variance distribution of haplogroup I-P37 clusters, ancestral "Dnieper-Carpathian" (DYS448=20) and derived "Balkan" (DYS448=19: represented by a single SNP I-PH908), in Eastern Europe per O.M. Utevska (2017).

ISOGG phylogenetic tree (2019), and according to YFull YTree it formed and had TMRCA approximately 1,850-1,700 YBP.[22] Although it is dominant among the modern Slavic peoples on the territory of the former Balkan provinces of the Roman Empire, until now it was not found among the samples from the Roman period and is almost absent in contemporary population of Italy.[34] According to Pamjav et al. (2019) and Fóthi et al. (2020), the distribution of ancestral subclades like of I-CTS10228 among contemporary carriers indicates a rapid expansion from Southeastern Poland, is mainly related to the Slavs and their medieval migration, and the "largest demographic explosion occurred in the Balkans".[34][35] According to Olalde et al. (2023) it was confirmed that I2-L621 was absent before medieval period in the Balkans and arrived with the Slavs.[13]

R1a1a1-M17 (22.1%-25.6%) is the second most prevailing haplogroup.[18] The haplogroup R-M17 in Croatia is mostly divided into two subclades, R-M558 which is predominant (19.2%), and R-M458 (4.9%), while R-Z282 is rare (1.2%).[23] It has highest frequency in northern (29.1%) and central (23.6%) region, and almost the same frequency in eastern (18.6%), southern (19.1%), and western (20%) region of Croatia.[18] The highest local frequency of R1a1a1-M17 was observed in the Croats from Varaždin (38%) and Osijek (26-39%),[17][19] Žumberak (34.1),[23] and in the middle-northern islands of Dugi Otok (34.1%), Krk (37%), Pašman (38%) and Cres (56.6%),[14][23] being similar to the values of the other Slavs, like Slovenes, Czechs and Slovaks. The frequency is lower in Šokci from eastern Croatia (16%),[20][21] in the city of Dubrovnik (13.4%) and Split (19%) in Dalmatia, as well on the southern islands of Hvar (8-10.58%) and Vis (17%).[14][23][19] In Bosnian Croats, the frequency is similar to those of other South Slavs (12%).[17][36] Considering subclades, the only outlier is island of Cres which had almost equal percentage of R1a-M558 (29.3%) and R1a-M458 (27.3%).[23] Based on 8 STR marker genetic distances closest are populations of near countries, but also depending on method, Belarus, Slovakia, Poland and Russia.[24] The R-M558 subclade is more frequent among East Slavs in Eastern Europe and Volga-Ural region, while R-M458 among West Slavs in Central and Eastern Europe. Both are present in "informative frequencies in Balkan populations with known Slavonic heritage".[37] R-M558 subclade CTS1211 was also found among Hungarian conquerors which indicates mixing and assimilation of the Slavs among the Hungarians.[38]

The highest frequency of the haplogroup Haplogroup R1b (7.9%-9.1%), which in Croatia is divided into several subclades (mainly R-L23 and its subclade R-U152), has in northern (10.9%) and central (11.8%) region of Croatia,[18] while locally in the Croats from the island of Krk (16.2%) and Dugi Otok (25%),[14][23] and Žumberak (11.3%),[23] while in the southern islands, city of Dubrovnik (3.9%) and in Bosnian Croats it is almost absent (1-6%),[14][17][23][19] or like in Osijek it was not found.[17] These two haplogroups (R1a and R1b) are connected to Proto-Indo-Europeans migration from the Eurasian area some 5,000 years ago,[25] with R1a particularly to Slavic population's migration.[16][23] Their frequency show north–south gradiation and an opposite frequency distribution to the haplogroup I-P37.2,[25] and the highest frequency is observed in the northern, central and eastern Croatia.[14][17][18]

The distribution of haplogroup E-V13 in Europe.

From the haplogroup E (9.8%-10.6%) among Croats the most frequent is subclade E1b1b1a1b-V13 (6.7%), while E1b1b1a3-M149 and E1b1b1c-M123 were also found in small numbers (1.1%).[17] E-V13 it's typical of the populations of south-eastern Europe, peaking among Kosovo Albanians (44%), and is also high among the Macedonians, Greeks, Romanians, Bulgarians and Serbs.[16] The highest frequency in Croatian mainland has been found in Varaždin (16%) and Žumberak (18.2%)[23][19] in central islands Dugi Otok (15.9%) and Ugljan (13.2%), as well southern islands Vis (23.4%) and Mljet (15.4%).[23] In the northern islands of Cres (3%)[23] and Krk (6.8%) was similar to other southern islands (3.7-4.3%).[14] In Bosnian Croats the frequency was the same as among the Croats from Croatia (8.9%).[17] Subclades of J1 are rare in Croatia, while J2 are higher in Croats from Croatia, peaking in Croats from Osijek (10.2%) and central islands Ugljan (10.2%) and Pašman (16.6%) as well the northern island of Krk (10.8%) and Cres (14.1%),[14][17][23] than in Bosnian Croats (both 1.1%).[17] Subclade G2a-P15 both in Croatian and Bosnian Croats is found in low numbers (1.1%),[17] but peaks locally in the north-eastern town of Osijek (13.8%),[17] and the southern islands of Mljet (15.4%), Korčula (10.4%), Brač (6%) as well northern island Cres (7%).[14][23] The haplogroup E and J are related to post-LGM, Neolithic migration of a population from Anatolia who brought with them domestication of wild animals and plants. Specifically, the haplogroup E's subclade probably arose locally in the Balkan not earlier than 8,000-10,000 years ago. These haplogroups show south–north gradiation.[25] The haplogroup G could have been present in Europe during the LGM or population with some of its subclades arrived with early farmers.[25]

Haplogroup's N subclades are rare in Croatia (0-2.2%).[17][23][19] It is very frequent in the Far East, like Siberia and China, while in Europe in Finns (60%) and in the Baltic countries (45%). Unusually for European populations, another central Asian-Siberian haplogroup P (i.e. Q) was found in unusually high frequencies due to founder effect in the islands of Hvar (7.69-14%), Lastovo (8.3%) and Korčula (6%).[14][23][19]

Abstract and data

The region of modern-day Croatia was part of a wider Balkan region which may have served as one of several refugia during the LGM, a source region for the recolonization of Europe during the post-glacial period and Holocene (10,000 years ago).[17][25] The eastern Adriatic coast was much further south.[15] The northern and the western parts of that sea were steppes and plains, while the modern Croatian islands (rich in Paleolithic archeological sites) were hills and mountains.[15][17] The region had a specific role in the structuring of European, and particularly among Slavic, paternal genetic heritage, characterized by the predominance of R1a and I, and scarcity of E lineages.[16] The contemporary insular population's genetic diversity is characterized by strong isolation and endogamy.[39]

In the table below is cited the most extensive study (2012) until now on the population in Croatia. It is a national reference DNA database of 17 loci system which acquired Y-STR haplotypes were predicted in estimated (over 90% probability) Y-SNP haplogroups.[18] The sub-populations were divided in five regions which sub-populations showed strong similarity and homogeneity of paternal genetic contribution, all clustering together, with exception of sub-population from southern Croatia who showed a mild difference. In addition to high degree of overall homogeneity, there are gradient similarities to a central European cluster (Germanic, Slavic, Hungarian), and a southern European cluster (Bosnian, Serbian, Bulgarian, Macedonian, Romanian, Albanian, South Italian), going from north to south (and east to west).[18] Out of the neighboring countries and ethnic peoples are closest to them Bosnia and Herzegovina and Bosniaks.[40][41][42]

Population Samples Source I2a(xI2a1) R1a
E1b1b1-M35
R1b I1 J2b G2a H J2a1h J1 J2a1b E1b1a1-M2 G1 G2c I2a1 I2b1 I2b(xI2b1) J2a1-bh L N Q T
Overall Croatia 1,100 Mršić et al. (2012) 37.7%
(415/1100)
22.1%
(243/1100)
10.6%
(117/1100)
7.9%
(87/1100)
5.8%
(64/1100)
3.7%
(41/1100)
2.7%
(30/1100)
1.8%
(20/1100)
1.2%
(13/1100)
1.1%
(12/1100)
1%
(11/1100)
0.1% 0 0.1% 0.1% 0.9% 0.3% 0.3% 0.2% 0.6% 0.7% 0.6%
Central Croatia 220 Mršić et al. (2012) 31.8%
(70/220)
23.6%
(52/220)
11.8%
(26/220)
10.4%
(23/220)
5%
(11/220)
5%
(11/220)
3.6%
(8/220)
1.3%
(3/220)
0.4%
(1/220)
2.2%
(5/220)
0.9%
(2/220)
0 0 0 0.4% 0.9% 0.9% 0 0.4% 0.9% 0 0
North Croatia 220 Mršić et al. (2012) 25.4%
(56/220)
29.1%
(64/220)
10.9%
(24/220)
10.4%
(23/220)
4.1%
(9/220)
5%
(11/220)
3.1%
(7/220)
5%
(11/220)
0.4%
(1/220)
0 0.4%
(1/220)
0.4% 0 0 0 2.2% 0.9% 0 0.4% 0.4% 0 1.3%
East
Croatia
220 Mršić et al. (2012) 40%
(88/220)
18.6%
(41/220)
11.3%
(25/220)
8.2%
(18/220)
5.9%
(13/220)
2.7%
(6/220)
1.8%
(4/220)
0.9%
(2/220)
2.2%
(5/220)
2.7%
(6/220)
1.3%
(3/220)
0 0 0 0 0.4% 0 0.4% 0 0.9% 1.8% 0.4%
West Croatia 220 Mršić et al. (2012) 36.8%
(81/220)
20%
(44/220)
12.7%
(28/220)
5.9%
(13/220)
8.6%
(19/220)
3.2%
(7/220)
3.2%
(7/220)
1.8%
(4/220)
1.8%
(4/220)
0.4%
(1/220)
1.8%
(4/220)
0 0 0.4% 0 0.4% 0 0.4% 0 0.9% 0.4% 0.9%
South Croatia 220 Mršić et al. (2012) 54.5%
(120/220)
19.1%
(42/220)
6.3%
(14/220)
4.5%
(10/220)
5.4%
(12/220)
2.7%
(6/220)
1.8%
(4/220)
0.4%
(1/220)
0.9%
(2/220)
0 0.4%
(1/220)
0 0 0 0 0.4% 0 0.9% 0.4% 0 1.3% 0.4%
Zagreb & Croatia 239 Purps et al. (2014)[43] 36.1% 23.8% 6.4% 13.9% 3.9% 2.1% n/a n/a 1.9% 0.9% n/a n/a 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a
Croatia 720 Šarac et al. (2016) 32.5% 25.6% 9.8% 9.1% 4.1% 5.0% 4.4% 0.3% 2.7% 0.5% 1.0% 0.4% 0 0 0.3% 0.8% 0.5% 1.0% 0 0.6% 0.9% 1.2%
Croatia 518 Primorac et al. (2022) 39% 24.32% 10.81% 6.37% 7.14% 2.12% 1.93% 0 3.47% (J2a) 0.58% n/a 0 0.19% n/a 1.35% (I2b) n/a n/a n/a 0.19% 0 1.93% 0.58%
West Herzegovina (Croats) 141 Peričić et al. (2005) 63.8% 12% 8.5% 3.5% 4.9% 0.7% n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.7% n/a
Bosnia and Herzegovina (Croats) 119 Kovačević et al. (2014)[44] 69.8% 11.8% 10.9% 2.5% 0 0.8% 0.8% n/a 0.8% n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Mitochondrial DNA

Ancient mtDNA

In the 2014 Y-DNA and mtDNA study, one Mesolithic sample dated 6080–6020 BCE from

Sardinians and Southern Europeans, while haplogroup HV or H4 for Bronze Age sample similar to modern day Croatian and Balkan population, but without clear evidence for connection with the Indo-European migration.[45] The 2018 study which included 17 samples from Croatia; Mesolithic (7308–7027 BCE) from Vela Spila to U5b2b, three Croatia Cardial Neolithic (6005–5751 BCE) samples from Zemunica Cave to H1, K1b1a and N1a1, Early-Neolithic Starčevo (5837–5659 BCE) from Beli Manastir-Popova zemlja to U8b1b1, two Early-Neolithic Croatia Impressa (5670–5560 BCE) samples from Kargadur to H5a and H7c, two Middle-Neolithic Sopot (5207–4546 BCE) samples from Osijek to U5a1a2 and H10, two Late-Neolithic Sopot (4790–4536 BCE) samples from Beli Manastir-Popova zemlja to U5b2b and N1a1, Eneolithic (3710–3360 BCE) from Radovanci to J1c2, three Vučedol (3000–2582 BCE) samples from Beli Manastir-Popova zemlja and Vucedol Tell to T2e, T2c2 and U4a, Early-Middle Bronze Age (1631–1521 BCE) from Veliki Vanik to I1a1, and the Late Bronze Age (805–761 BCE) sample from Jazinka Cave belonged to HV0e.[2] The 2021 study included 38 Neolithic (4200 BCE) samples from Potočani in Eastern Croatia and belonged to H, H4a1, H5b, H7, H13b1, H26, H42, HV, J1, K1a1, K1a3a, K1a4a1, K1b1b1, N1a1a1, N1a1a1a2, N1a1a1a3, T1a2, T2b, T2b23, T2f, U2, U5b1d1 and X2b, "suggesting that the Potočani victims belonged to a large community with a diverse pool of female lineages".[6] In the same year study of 28 samples from Neolithic up to Roman times in Eastern Croatia found H, HV9, J2b1a5, K1a, K1a1, K1a1a, K1a4, K1a5, K1b1b1, K2a, K2b1, N1a1a1, N1a1a1a2, N1a1a1a3, T2b, T2b11, T2b21, T2b3, T2c1d1, T2f2, U2e1a1, U5a1g, U5b1b1a, U5b2b, U8b1a1.[8]

The 2011 mtDNA study on 27 early medieval skeletal remains in Naklice near Omiš in Southern Dalmatia showed that 67% belonged to haplogroup H, 18% to J, 11% to U5, and 4% to HV.[46] The 2015 mtDNA study on medieval skeletal remains in Šopot (14th-15th century) and Ostrovica (9th century) in Northern Dalmatia confirmed that profiles inherited by the maternal line differed neither between Ostrovica and Šopot site nor between medieval and modern populations, showing the same haplogroup prevalence (H, J, U) in both medieval and contemporary populations.[47] The 2014 study of a male skeleton found in Split from Late Roman Period (dated 1760±80 YBP) showed that it belonged to haplogroup H.[48]

Contemporary mtDNA

before present
.

Genetically, on the maternal

U (18.85-22%), J (7.5-11%), while a large minority (>35%) belongs to many other smaller haplogroups.[49][50]

In all the studies, haplogroup H is the most frequent (45% in 2014) maternal haplogroup in Croatian mainland (continental) and coast respectively, but in most recent 2020 study is at lower frequencies of 25.5% due to nomenclature differences primarily of R/R0 (7.5%) lineages.[50] The highest frequency in Croatia observed in population of island Korčula (60.2%), Susak (66%) and Mljet (73.5%),[49][51] while lowest frequency in islands Cres (27.7%),[52] and Hvar (27.8%).[53] It is the dominant European haplogroup.[49] The elevated frequency of subhaplogroup H1b in Mljet (30.9%), otherwise rare in other studies, is a typical example of a founder effect – migration from the nearest coastal region and micro-evolutionary expansion in the island.[49]

Haplogroup U (18.85% in 2014,

U4 in Lastovo (11.8%) indicates founder effect.[49]

Haplogroup J is the third most frequent haplogroup (7.5% in 2020[50]), with 11.9% in the mainland but only 3.1% in the coast, however the islands had higher frequencies than the coastal population Korčula (6.1%), Brač (8.6%), Krk (9%), Hvar (9.3%),[53] peak in Žumberak (12.34%)[54] and Lastovo (19.6%),[49] while in Cres is almost totally absent.[52]

Haplogroup T is third or fourth most frequent haplogroup (10% in 2020[50]). Its subclade T2 has similar frequency of 3.1-5.8% in both the coastal and mainland as well insular population, with exceptional peak in island Hvar (12%),[53][52] and Susak (33%),[51] however the overall haplogroup T has lower frequency in Mljet (1.5%), Lastovo (3.9%) and Dubrovnik (2.3).[49]

Haplogroup K (7.5% in 2020[50]) has average frequency of 3.6% in the mainland and 6.3% in the coast, it is absent in Lastovo[49] and it has lowest frequency in the islands Cres (3.36%)[52] and Hvar (3.7%), while highest in the island Brač (9.5%).[53]

Haplogroup

HV > HV0) is a younger sister clade of haplogroup H,[49] and has almost the same minimum and maximum frequency (4-5.7%) in both continental and insular populations, with exception in Korčula (8.2%),[53] as well lower frequency in Mljet (1.5%), Lastovo (2%) and Dubrovnik (3.3%).[49]

Haplogroup

W frequency in the mainland and coastal population is between 2.2 and 4.2%, while between insular populations 1.9-3.1%, with exception in Krk (7.5%),[53] and Cres (12.6%).[52] In islands Mljet and Lastovo is between 4.4 and 5.9%, while in Dubrovnik is almost absent (0.6%).[49]

Other mtDNA haplogroup with notable local peaks are: HV subclades with low frequencies in the mainland and coast (0.4-2.1%) but average (4.1-4.6) in islands, and high in Dubrovnik (7.7%)[49] and Brač (10.5%).[53] Haplogroup N1a in Cres (9.24%) is the northernmost finding till now of this branch in Europe, and haplotypes indicate a relatively recent founder effect.[52] It is a characteristic haplogroup of the early farmers.[1] Haplogroup F which is almost absent (only 0.2-0.4% in the mainland), but peaks at 8.3% in Hvar.[53][54] Haplogroup I in Krk (11.3%), which subhaplogroups separated around the LGM.[55] Haplogroup X ranges 0.63-3.17%, mainly belonging to subclade X2 > X2b,[54] and recent research of Cres and Rab possibly found a "new, island-specific" X3 lineage which "formed within the Croatian population".[56]

Abstract and data

For decades the Croatian insular populations have been studied because of their isolation which can trace micro-evolutionary processes and understand evolutionary forces, like genetic drift (specific genetic expression), founder effect and population bottlenecks (reduction of population size) which shaped the contemporary population. The results until now indicate that the genetic flow and influx of women to the islands was limited.

Vlachs or Morlachs migrants from the Velebit hinterland who arrived in the 15th century.[55] On the example of population of the island of Mljet can be perceived demographic and historical events like the island's use for quarantine station, while along Vis and Lastovo consanguinity practice and inbreeding due to lack of genetic diversity, being suitable for genetic-epidemiological research.[49]

In the 2004 mtDNA analysis, one cluster was formed by populations from islands Hvar, Krk and Brač, and second cluster included Croatian mainland and Croatian coast, while the island of Korčula was distinguished due to exceptionally high frequency of haplogroup H.[53] In the 2009 mtDNA interpopulation PCA analysis of sub-haplogroups, insular populations from Krk, Ugljan, Korčula, Brač, Hvar were clustered together implying to have close maternal lineages, with Vis close to them, but Rab (U4, H6, J1c) and especially Cres (prevalence U2, W, N1a) had separate outlying positions from both the cluster and each other, and confirmed "that genetic drift, especially founder effect, has played significant role in shaping genetic composition of the isolated population of the island of Cres".[52] In 2017 study the greatest outlier due to isolation, endogamy and lowest reported gene diversity index was Susak.[51] In the 2014 mtDNA PCA analysis, the populations from eastern and southern Croatia clustered together with Bosnia and Herzegovina, while western and northern Croatia with Slovenia. As Slovenian population does not form Southeast Europe cluster it is considered a possible input from different migration waves of Slavs in the Middle Ages.[54]

Population Samples Source H
HV
J T K
U
*
U1 U2 U3 U4 U5 U6 U7 U8 R N I
W
X Other
Croatia 488 Šarac et al. (2014) 45.29 4.07 9.83 5.98 4.30 0 1.23 2.66 1.43 2.66 10.06 0.20 0.41 0.20 0 0.82 2.61 1.84 1.84 4.29
East Croatia 61 Šarac et al. (2014) 49.18 11.48 9.84 3.28 4.92 0 0 0 1.64 1.64 9.84 0 0 0 0 1.64 0 4.92 1.64 0
North Croatia 155 Šarac et al. (2014) 41.77 5.06 14.56 10.76 3.16 0 0.63 1.90 0.63 3.16 11.39 0.63 0 0.63 0 0 1.27 2.53 0.63 0.63
West Croatia 209 Šarac et al. (2014) 46.41 11.48 6.70 2.39 5.74 0 2.39 4.31 1.91 2.39 6.22 0 0.96 0 0 0.96 4.78 0 2.39 0
South Croatia 63 Šarac et al. (2014) 49.21 3.17 7.94 9.52 3.17 0 0 1.59 1.59 3.17 12.70 0 0 0 0 1.59 1.59 1.59 3.17 0
Croatia 200 Barbarić et al. (2020) 25.5 11.5 7.5 10 7.5 0 2 4 2.5 2.5 10 0 1 0 7.5 2 3 1 2 0.5

Contemporary autosomal DNA

The median plot of Croats from Croatia on a PCA including European countries, per Gilbert et al. 2022.[57]

According to 2013

Islamization of the Balkans.[36] In the 2022 analysis Croatian, Bosnian and Herzegovinian, and Serbian individuals made "Northwestern Balkans" cluster which had less Southern European ("Greek") ancestry than "Northeastern Balkans" cluster formed by Romanian and Bulgarian individuals. The "NW Balkans" cluster also had "slightly longer within-cluster IBD segments than NE Balkans, which is matched with a consistently lower Ne and elevated ROH—suggestive of a smaller population than the northeast of the Balkans".[57]

According to a 2014 autosomal analysis of Western Balkan, the Croatian population shows genetic uniformity with other South Slavic populations. The Croatians and Bosnians were more close to East European populations and largely overlapped with Hungarians from Central Europe.

According to 2023 archaeogenetic study autosomal qpAdm modelling, the modern-day Croats are 66.5% of Central-Eastern European early medieval Slavic ancestry, 31.2% of Croatia-Serbia local Roman ancestry and 2.4% West Anatolia-Ottoman ancestry.[13]

According to 2005 and 2006 autosomal STR marker studies the most isolated islands were Korčula,[61] and Susak.[39] A 2016 whole exome sequencing study of 176 individuals from the island of Vis confirmed the isolate status of the island's population, and revealed the "pattern of loss-of-function mutations, which resembles the trails of adaptive evolution".[62] The 2022 autosomal STR marker study on 2877 unrelated individuals from mainland (cities Zagreb, Pazin, Delnice, Zabok and Donji Miholjac, and region of Baranja) and insular (Krk, Cres, three North Dalmatian islands Ugljan-Pašman-Dugi Otok, Brač, Hvar, Korčula and Vis) subpopulations found higher genetic differentiation (0.005) compared to Southeastern Europe (0.002) indicating "a certain degree of genetic isolation, most likely due to the influence of endogamy within rural island populations". Croatian population is closest to Bosnia and Herzegovina, Hungary and Slovenia. There are visible four main clusters within sampled Croats, first including Mainland-Brač and Krk-North Dalmatian islands, second Hvar-Korčula, third Cres, and fourth Vis, the latter two having highest distances from the others.[63]

  • Admixture analysis of autosomal SNPs in a global context on the resolution level of 7 assumed ancestral populations per Kovačević et al. (2014)
    Admixture analysis of autosomal SNPs in a global context on the resolution level of 7 assumed ancestral populations per Kovačević et al. (2014)
  • Principal component (PC) analysis of the variation of autosomal SNPs in Western Balkan populations in Eurasian context per Kovačević et al. (2014)
    Principal component (PC) analysis of the variation of autosomal SNPs in Western Balkan populations in Eurasian context per Kovačević et al. (2014)
  • Admixture analysis on the resolution level of 6 assumed ancestral populations per Kushniarevich et al. (2015)
    Admixture analysis on the resolution level of 6 assumed ancestral populations per Kushniarevich et al. (2015)
  • Genetic structure within European context according to three genetic systems atDNA (A), YDNA (B) and mtDNA (C) per Kushniarevich et al. (2015)
    Genetic structure within European context according to three genetic systems atDNA (A), YDNA (B) and mtDNA (C) per Kushniarevich et al. (2015)
  • PC1vsPC2 plot based on whole genome SNP data per Kushniarevich et al. (2015)
    PC1vsPC2 plot based on whole genome SNP data per Kushniarevich et al. (2015)

See also

Notes

  1. ^ a b c Szécsényi-Nagy et al. 2015.
  2. ^ a b c Mathieson et al. 2018.
  3. ^ Fernandes et al. 2019.
  4. ^ Andrews, Robin George (10 March 2021). "DNA study of 6,200-year-old massacre victims raises more questions than answers". National Geographic. Archived from the original on March 10, 2021. Retrieved 29 July 2022.
  5. ^ Davis-Mark, Isis (17 March 2021). "Analysis of 6,200-Year-Old Grave Raises New Questions About Neolithic Massacre". Smithsonian. Retrieved 29 July 2022.
  6. ^ a b Novak, Olalde, Ringbauer et al. 2021.
  7. ^ "R-F1019 YTree v10.04.00 (ID: POP23)". YFull.com. 4 July 2022. Retrieved 29 July 2022.
  8. ^ a b Freilich, Ringbauer, Los et al. 2021.
  9. ^ Patterson et al. 2022.
  10. ^ Lazaridis et al. 2021.
  11. S2CID 251844202
    .
  12. ^ "Ancient DNA analysis reveals how the rise and fall of the Roman Empire shifted populations in the Balkans". ScienceDaily. December 7, 2023. Retrieved December 8, 2023.
  13. ^ . Retrieved December 8, 2023.
  14. ^ a b c d e f g h i j k l m Barać et al. 2003.
  15. ^ a b c d e f Rootsi et al. 2004.
  16. ^ a b c d e f g h Peričić et al. 2005.
  17. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Battaglia et al. 2008.
  18. ^ a b c d e f g h Mršić et al. 2012.
  19. ^ a b c d e f g h i j k Primorac et al. 2022.
  20. ^ a b Jurić, Ivan (2006). "Genetičko podrijetlo šokačkih rodova na području Vinkovaca" [Genetic Origin of Šokci Genera in the Area of Vinkovci]. Godišnjak Ogranka Matice Hrvatske Vinkovci (in Croatian). 24: 143–160. Retrieved 13 August 2020.
  21. ^ a b Jurić, Ivan (2008). "Genetičko podrijetlo šokačkih rodova" [Genetic Origin of Šokci Genera]. Godišnjak Za Kulturu, Umjetnost I Društvena Pitanja (in Croatian). 25: 193–208. Retrieved 13 August 2020.
  22. ^ a b c "I-PH908 YTree v8.06.01". YFull.com. 27 June 2020. Retrieved 17 July 2020.
  23. ^ a b c d e f g h i j k l m n o p q r s t u v Šarac et al. 2016.
  24. ^ a b Šarac et al. 2016, Supplementary Table 9.
  25. ^ a b c d e f Primorac et al. 2011.
  26. ^ "I-P37 YTree v6.07.08". YFull.com. 10 November 2018. Retrieved 11 November 2018.
  27. ^ "I2a Y-Haplogroup – Results: I2a2a-Dinaric". Family Tree DNA. Retrieved 11 November 2018. Ken Nordtvedt has split I2a2-M423-Dinaric into Din-N and Din-S. Din-N is older than Din-S. N=north of the Danube and S=south of the Danube River ... May 8, 2007: Dinaric I1b1 and DYS 448. DYS448 19 for S and 20 for N.
  28. ^ Bernie Cullen (22 August 2016). "Link to I-L621 tree showing major STR clusters (Updated)". i2aproject.blogspot.com. Blogger. Retrieved 3 April 2019.
  29. ISOGG
    . 1 November 2018. Retrieved 11 November 2018.
  30. ^ Zupan et al. 2013.
  31. ^ a b c Utevska 2017, p. 219–226, 302.
  32. ^ Šarac et al. 2016, p. 6:It is important to stress that the proposed old age of the I2a1b-M423 and R1a1a1b1a*-M558 lineages obtained in previous studies (Battaglia et al., 2009; Peričić et al., 2005; Rootsi et al., 2004; Underhill et al., 2007, 2015) has been based on STR analysis (8 and 10 loci, respectively) and recent studies clearly indicate that the STR-based age calculations tend to yield overestimated dates (Batini et al., 2015; Hallast et al., 2015; Karmin et al., 2015)..
  33. S2CID 253974249
    . While the reasons for the difference between genealogical and evolutionary Y-STR rates are thus partly understood, it remains unclear which rate to use. Many have applied the evolutionary rate, though quite a few have used the genealogical, or both, rates. Genetic genealogists generally apply the genealogical rate and criticize population-genetic studies for reporting (in their view) three-times overestimated ages ... The age of each haplogroup was also calculated using the STR genealogical rate and the STR evolutionary rate. Confidence intervals for the two STR-based ages (not shown on the plot) do not overlap. For example, the genealogical age of I2a-L621 (2200 ± 500 years) reaches the envelope age (from 2600 to 3100 ages), while the evolutionary age lies far beyond (9900 ± 2700 years). The observed pattern (Fig. 2a) clearly differs for haplogroups of different age classes. For ages less than 7000 years, the genealogical STR rate provides results consistent with or slightly underestimating the "true" ages, while the evolutionary rate results in three-fold overestimates. For ages between roughly 7000 and 15,000 years neither STR rate provides correct results. For haplogroups older than 15,000 years, the evolutionary rate estimates correctly or overestimates the "true" age.
  34. ^ , We looked at 16 loci from 640 I2a-L621 samples in FTDNA's I2a project database and found that 7 individuals were 2 genetic steps away the Karos samples, of whom 1 was a Hungarian from Kunszentmárton, 2 were Ukrainians, 1 was Lithuanian, 1 was Belarusian, 1 was Russian, and 1 was a German from Poland. Based on SNP analysis, the CTS10228 group is 2200 ± 300 years old. The group's demographic expansion may have begun in Southeast Poland around that time, as carriers of the oldest subgroup are found there today. The group cannot solely be tied to the Slavs, because the proto-Slavic period was later, around 300–500 CE ... The SNP-based age of the Eastern European CTS10228 branch is 2200 ± 300 years old. The carriers of the most ancient subgroup live in Southeast Poland, and it is likely that the rapid demographic expansion which brought the marker to other regions in Europe began there. The largest demographic explosion occurred in the Balkans, where the subgroup is dominant in 50.5% of Croatians, 30.1% of Serbs, 31.4% of Montenegrins, and in about 20% of Albanians and Greeks. As a result, this subgroup is often called Dinaric. It is interesting that while it is dominant among modern Balkan peoples, this subgroup has not been present yet during the Roman period, as it is almost absent in Italy as well (see Online Resource 5; ESM_5). ... Their genetic haplogroup, I2a-CTS10228, is widespread among Slavs, but it is only present in 7% of Caucasian peoples, namely among the Karachay ... As such, it appears that the I2a-CTS10228 haplogroup in the paternal lineage of the Karos leaders arises from a specific branch in the Northern Caucasus dating to about 400–500 CE. Its modern descendents live among the Karachay, Hungarians, and various other surrounding nationalities.
  35. . Az I2-CTS10228 (köznevén "dinári-kárpáti") alcsoport legkorábbi közös őse 2200 évvel ezelőttre tehető, így esetében nem arról van szó, hogy a mezolit népesség Kelet-Európában ilyen mértékben fennmaradt volna, hanem arról, hogy egy, a mezolit csoportoktól származó szűk család az európai vaskorban sikeresen integrálódott egy olyan társadalomba, amely hamarosan erőteljes demográfiai expanzióba kezdett. Ez is mutatja, hogy nem feltétlenül népek, mintsem családok sikerével, nemzetségek elterjedésével is számolnunk kell, és ezt a jelenlegi etnikai identitással összefüggésbe hozni lehetetlen. A csoport elterjedése alapján valószínűsíthető, hogy a szláv népek migrációjában vett részt, így válva az R1a-t követően a második legdominánsabb csoporttá a mai Kelet-Európában. Nyugat-Európából viszont teljes mértékben hiányzik, kivéve a kora középkorban szláv nyelvet beszélő keletnémet területeket.
  36. ^ a b c d Kovačević et al. 2014.
  37. PMID 24667786
  38. ^ Neparáczki et al. 2019, :The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.
  39. ^ a b Vitart et al. 2006.
  40. ^ Mršić et al. 2012, p. 7735.
  41. PMID 20091845
    .
  42. ^ Scorrano G (2017). "The Genetic Landscape of Serbian Populations through Mitochondrial DNA Sequencing and Non-Recombining Region of the Y Chromosome Microsatellites". Collegium Antropologicum. 41 (3): 279–385.
  43. ^ Šehović et al. 2018.
  44. ^ Kovačević et al. 2014, :first published in Marjanović et al. 2005 with 90 samples, the same samples retested in Battaglia et al. 2009, retested again and 29 additional samples added in Kovačević et al. 2014.
  45. ^ Fernandes et al. 2016.
  46. ^ Ljubković et al. 2011.
  47. ^ Bašić et al. 2015.
  48. ^ Sutlović et al. 2014.
  49. ^ a b c d e f g h i j k l m n o Šarac et al. 2012.
  50. ^ a b c d e f Barbarić et al. 2020.
  51. ^ a b c Šarac et al. 2017.
  52. ^ a b c d e f g h Jeran et al. 2009.
  53. ^ a b c d e f g h i j Cvjetan et al. 2004.
  54. ^ a b c d e f Šarac et al. 2014.
  55. ^ a b Havaš Auguštin et al. 2012.
  56. ^ Havaš Auguštin et al. 2022.
  57. ^ a b Gilbert et al. 2022.
  58. ^ Ralph et al. 2013.
  59. ^ a b c d Kushniarevich et al. 2015.
  60. ^ Delser et al. 2018.
  61. ^ Martinović Klarić et al. 2005.
  62. ^ Jeroncic et al. 2016.
  63. ^ Novokmet et al. 2022a, p. 235–236, 241.
  1. ISOGG phylogenetic tree is named as I2a1a2b1a1a1c,[29] while formed and had TMRCA approximately 1,800 YBP according to YFull.[22]

References

Y-DNA
mtDNA
atDNA
Archaeogenetics

External links