Ancient DNA

Ancient DNA (aDNA) is
Even under the best preservation conditions, there is an upper boundary of 0.4–1.5 million years for a sample to contain sufficient DNA for sequencing technologies.[5] The oldest DNA sequenced from physical specimens are from mammoth molars in Siberia over 1 million years old.[6] In 2022, two-million-year-old genetic material was recovered from sediments in Greenland, and is currently considered the oldest DNA discovered so far.[7][8]
History of ancient DNA studies
1980s

The first study of what would come to be called aDNA was conducted in 1984, when Russ Higuchi and colleagues at the University of California, Berkeley reported that traces of DNA from a museum specimen of the Quagga not only remained in the specimen over 150 years after the death of the individual, but could be extracted and sequenced.[9] Over the next two years, through investigations into natural and artificially mummified specimens, Svante Pääbo confirmed that this phenomenon was not limited to relatively recent museum specimens but could apparently be replicated in a range of mummified human samples that dated as far back as several thousand years.[10][11][12]
The laborious processes that were required at that time to sequence such DNA (through
1990s

The post-PCR era heralded a wave of publications as numerous research groups claimed success in isolating aDNA. Soon a series of incredible findings had been published, claiming authentic DNA could be extracted from specimens that were millions of years old, into the realms of what Lindahl (1993b) has labelled Antediluvian DNA.[16] The majority of such claims were based on the retrieval of DNA from organisms preserved in amber. Insects such as stingless bees,[17][18] termites,[19] and wood gnats,[20] as well as plant[21] and bacterial[22] sequences were said to have been extracted from Dominican amber dating to the Oligocene epoch. Still older sources of Lebanese amber-encased weevils, dating to within the Cretaceous epoch, reportedly also yielded authentic DNA.[23] Claims of DNA retrieval were not limited to amber.
Reports of several sediment-preserved plant remains dating to the Miocene were published.[24][25] Then in 1994, Woodward et al. reported what at the time was called the most exciting results to date[26] — mitochondrial cytochrome b sequences that had apparently been extracted from dinosaur bones dating to more than 80 million years ago. When in 1995 two further studies reported dinosaur DNA sequences extracted from a Cretaceous egg,[27][28] it seemed that the field would revolutionize knowledge of the Earth's evolutionary past. Even these extraordinary ages were topped by the claimed retrieval of 250-million-year-old halobacterial sequences from halite.[29][30]
The development of a better understanding of the kinetics of DNA preservation, the risks of sample contamination and other complicating factors led the field to view these results more skeptically. Numerous careful attempts failed to replicate many of the findings, and all of the decade's claims of multi-million year old aDNA would come to be dismissed as inauthentic.[31]
2000s
Single primer extension amplification was introduced in 2007 to address postmortem DNA modification damage.

In addition to these technical innovations, the start of the decade saw the field begin to develop better standards and criteria for evaluating DNA results, as well as a better understanding of the potential pitfalls.[31][36]
2020s
Autumn of 2022, the Nobel Prize of Physiology or Medicine was awarded to Svante Pääbo "for his discoveries concerning the genomes of extinct hominins and human evolution".[37] A few days later, on the 7th of December 2022, a study in Nature reported that two-million year old genetic material was found in Greenland, and is currently considered the oldest DNA discovered so far.[7][8]
Problems and errors
Degradation processes
Due to degradation processes (including cross-linking, deamination and fragmentation),[3] ancient DNA is of lower quality than modern genetic material.[4] The damage characteristics and ability of aDNA to survive through time restricts possible analyses and places an upper limit on the age of successful samples.[4] There is a theoretical correlation between time and DNA degradation,[38] although differences in environmental conditions complicate matters. Samples subjected to different conditions are unlikely to predictably align to a uniform age-degradation relationship.[39] The environmental effects may even matter after excavation, as DNA decay-rates may increase,[40] particularly under fluctuating storage conditions.[41] Even under the best preservation conditions, there is an upper boundary of 0.4 to 1.5 million years for a sample to contain sufficient DNA for contemporary sequencing technologies.[5]
Research into the decay of mitochondrial and nuclear DNA in moa bones has modelled mitochondrial DNA degradation to an average length of 1 base pair after 6,830,000 years at −5 °C.[4] The decay kinetics have been measured by accelerated aging experiments, further displaying the strong influence of storage temperature and humidity on DNA decay.[42] Nuclear DNA degrades at least twice as fast as mtDNA. Early studies that reported recovery of much older DNA, for example from Cretaceous dinosaur remains, may have stemmed from contamination of the sample.
Age limit
A critical review of ancient DNA literature through the development of the field highlights that few studies have succeeded in amplifying DNA from remains older than several hundred thousand years.
aDNA may contain a large number of postmortem mutations, increasing with time. Some regions of polynucleotide are more susceptible to this degradation, allowing erroneous sequence data to bypass statistical filters used to check the validity of data.[31] Due to sequencing errors, great caution should be applied to interpretation of population size.[46] Substitutions resulting from deamination of cytosine residues are vastly over-represented in the ancient DNA sequences. Miscoding of C to T and G to A accounts for the majority of errors.[47]
Contamination
Another problem with ancient DNA samples is contamination by modern human DNA and by microbial DNA (most of which is also ancient).[48][49] New methods have emerged in recent years to prevent possible contamination of aDNA samples, including conducting extractions under extreme sterile conditions, using special adapters to identify endogenous molecules of the sample (distinguished from those introduced during analysis), and applying bioinformatics to resulting sequences based on known reads in order to approximate rates of contamination.[50][51]
Authentication of aDNA
Development in the aDNA field in the 2000s increased the importance of authenticating recovered DNA to confirm that it is indeed ancient and not the result of recent contamination. As DNA degrades over time, the nucleotides that make up the DNA may change, especially at the ends of the DNA molecules. The deamination of cytosine to uracil at the ends of DNA molecules has become a way of authentication. During DNA sequencing, the DNA polymerases will incorporate an adenine (A) across from the uracil (U), leading to cytosine (C) to thymine (T) substitutions in the aDNA data.[52] These substitutions increase in frequency as the sample gets older. Frequency measurement of the C-T level, ancient DNA damage, can be made using various software such as mapDamage2.0 or PMDtools [53][54] and interactively on metaDMG.[55] Due to hydrolytic depurination, DNA fragments into smaller pieces, leading to single-stranded breaks. Combined with the damage pattern, this short fragment length can also help differentiate between modern and ancient DNA.[56][57]
Non-human aDNA
Despite the problems associated with aDNA, a wide and ever-increasing range of aDNA sequences have now been published from a range of animal and plant taxa. Tissues examined include artificially or naturally mummified animal remains,[9][58] bone,[59][60][61][62] shells,[63] paleofaeces,[64][65] alcohol preserved specimens,[66] rodent middens,[67] dried plant remains,[68][69] and recently, extractions of animal and plant DNA directly from soil samples.[70]
In June 2013, a group of researchers including Eske Willerslev, Marcus Thomas Pius Gilbert and Orlando Ludovic of the Centre for Geogenetics, Natural History Museum of Denmark at the University of Copenhagen, announced that they had sequenced the DNA of a 560–780 thousand year old horse, using material extracted from a leg bone found buried in permafrost in Canada's Yukon territory.[71][72][73] A German team also reported in 2013 the reconstructed mitochondrial genome of a bear, Ursus deningeri, more than 300,000 years old, proving that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost.[74] The DNA sequence of even older nuclear DNA was reported in 2021 from the permafrost-preserved teeth of two Siberian mammoths, both over a million years old.[6][75]
Researchers in 2016 measured chloroplast DNA in marine sediment cores, and found diatom DNA dating back to 1.4 million years.[76] This DNA had a half-life significantly longer than previous research, of up to 15,000 years. Kirkpatrick's team also found that DNA only decayed along a half-life rate until about 100 thousand years, at which point it followed a slower, power-law decay rate.[76]
Human aDNA

Due to the considerable anthropological, archaeological, and public interest directed toward human remains, they have received considerable attention from the DNA community. There are also more profound contamination issues, since the specimens belong to the same species as the researchers collecting and evaluating the samples.
Sources
Due to the
Ancient
Results
Taking preventative measures in their procedure against such contamination though, a 2012 study analyzed bone samples of a
The research has added new complexity to the peopling of Eurasia. A study from 2018 [94] showed that a Bronze Age mass migration had greatly impacted the genetic makeup of the British Isles, bringing with it the Bell Beaker culture from mainland Europe.
It has also revealed new information about links between the ancestors of Central Asians and the indigenous peoples of the Americas. In Africa, older DNA degrades quickly due to the warmer tropical climate, although, in September 2017, ancient DNA samples, as old as 8,100 years old, have been reported.[95]
Moreover, ancient DNA has helped researchers to estimate modern human divergence.[96] By sequencing African genomes from three Stone Age hunter gatherers (2000 years old) and four Iron Age farmers (300 to 500 years old), Schlebusch and colleagues were able to push back the date of the earliest divergence between human populations to 350,000 to 260,000 years ago.
As of 2021, the oldest completely reconstructed human genomes are ~45,000 years old.[97][77] Such genetic data provides insights into the migration and genetic history – e.g. of Europe – including about interbreeding between archaic and modern humans like a common admixture between initial European modern humans and Neanderthals.[98][77][99]
Researchers specializing in ancient DNA
See also
- Ancient pathogen genomics
- Ancient protein
- Archaeogenetics
- Environmental DNA (eDNA)
- List of DNA tested mummies
- List of haplogroups of historic people
- Molecular paleontology
- Paleogenetics
- sedaDNA)
References
- ISBN 978-1118581780.
- ISBN 978-1628724479.
- ^ S2CID 257326012.
- ^ PMID 23055061.
- ^ S2CID 12227538.
- ^ PMID 33597750.
- ^ a b Zimmer C (7 December 2022). "Oldest Known DNA Offers Glimpse of a Once-Lush Arctic - In Greenland's permafrost, scientists discovered two-million-year-old genetic material from scores of plant and animal species, including mastodons, geese, lemmings and ants". The New York Times. Retrieved 7 December 2022.
- ^ PMID 36477129.
- ^ S2CID 4313241.
- .
- S2CID 1358295.
- ^ PMID 3107879.
- PMID 3431465.
- S2CID 239687836.
- PMID 2448875.
- S2CID 4365447.
- ^ Cano RJ, Poinar H, Poinar Jr GO (1992a). "Isolation and partial characterisation of DNA from the bee Problebeia dominicana (Apidae:Hymenoptera) in 25–40 million year old amber". Med Sci Res. 20: 249–51.
- ^ Cano RJ, Poinar HN, Roubik DW, Poinar Jr GO (1992b). "Enzymatic amplification and nucleotide sequencing of portions of the 18S rRNA gene of the bee Problebeia dominicana (Apidae:Hymenoptera) isolated from 25–40 million year old Dominican amber". Med Sci Res. 20: 619–22.
- PMID 18979000.
- PMID 7888749.
- S2CID 4330200.
- PMID 8031102.
- S2CID 4243196.
- PMID 1684052.
- S2CID 26577394.
- PMID 7973705.
- ^ An CC, Li Y, Zhu YX (1995). "Molecular cloning and sequencing of the 18S rDNA from specialized dinosaur egg fossil found in Xixia Henan, China". Acta Sci Nat Univ Pekinensis. 31: 140–47.
- ^ Li Y, An CC, Zhu YX (1995). "DNA isolation and sequence analysis of dinosaur DNA from Cretaceous dinosaur egg in Xixia Henan, China". Acta Sci Nat Univ Pekinensis. 31: 148–52.
- S2CID 9879073.
- S2CID 4423309.
- ^ PMID 15568989. Archived from the original(PDF) on December 17, 2008.
- PMID 17715147.
- ^ Reich 2018.
- PMID 26651516.
- PMID 24924389.
- ^ PMID 15719062.
- ^ "The Nobel Prize in Physiology or Medicine 2022". Retrieved 2024-10-31.
- PMID 15866038.
- PMID 16582426.
- PMID 17210911.
- S2CID 7325310.
- ^
Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ (February 2015). "Robust chemical preservation of digital information on DNA in silica with error-correcting codes". Angewandte Chemie. 54 (8): 2552–5. PMID 25650567.
- S2CID 1222227.
- PMID 7605504.
- PMID 17728401.
- PMID 17981928.
- PMID 17715061.
- PMID 25081630.
- PMID 30200636.
- PMID 27274045.
- PMID 34395085.
- PMID 23729639.
- PMID 23613487.
- PMID 24469802.
- bioRxiv 10.1101/2022.12.06.519264.
- S2CID 16440465.
- S2CID 252763827.
- S2CID 4310500.
- S2CID 13434992.
- PMID 1528888.
- S2CID 8694387.
- PMID 7991628.
- PMID 38709766.
- PMID 9665881.
- S2CID 22685601.
- PMID 11963980.
- S2CID 10538371.
- PMID 8446621.
- S2CID 41967121.
- PMID 15875564.
- .
- ^ Lee JL (November 7, 2017). "World's Oldest Genome Sequenced From 700,000-Year-Old Horse DNA". National Geographic. Retrieved May 19, 2019.
- S2CID 4318227.
- PMID 24019490.
- PMID 33597786.
- ^ ISSN 0091-7613.
- ^ .
- PMID 8209259.
- S2CID 39302526.
- PMID 7806242.
- PMID 26086078.
- PMID 11296282.
- ^ Baker LE (2001). Mitochondrial DNA haplotype and sequence analysis of historic Choctaw and Menominee hair shaft samples (PhD thesis). University of Tennessee, Knoxville.
- PMID 15203015.
- PMID 9830142.)
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link - PMID 9448313.
- PMID 11226311.
- S2CID 8976173.
- ^ QIIME
- bioRxiv 10.1101/267179.
- PMID 21482084.
- ^ Zimmer C (16 November 2015). "In a Tooth, DNA From Some Very Old Cousins, the Denisovans". The New York Times. Retrieved 16 November 2015.
- PMID 26630009.
- PMID 29466337.
- ^ Zimmer C (21 September 2017). "Clues to Africa's Mysterious Past Found in Ancient Skeletons". The New York Times. Retrieved 21 September 2017.
- PMID 28971970.
- ^ "Neanderthal ancestry identifies oldest modern human genome". phys.org. Retrieved 10 May 2021.
- ^ "Europe's oldest known humans mated with Neandertals surprisingly often". Science News. 7 April 2021. Retrieved 10 May 2021.
- .
Further reading
- ISBN 978-1101870327.
- Diamond J (April 20, 2018). "A Brand-New Version of Our Origin Story". The New York Times. Retrieved April 23, 2018.
- Orlando L (June 2014). "A 400,000-year-old mitochondrial genome questions phylogenetic relationships amongst archaic hominins: using the latest advances in ancient genomics, the mitochondrial genome sequence of a 400,000-year-old hominin has been deciphered". BioEssays. 36 (6): 598–605. S2CID 35786511.
- Jones E (2022). Ancient DNA: The Making of a Celebrity Science. ISBN 978-0-300-24012-2.
External links
- "Ancient DNA". Ancestral journeys. Archived from the original on October 3, 2016.
- Famous mtDNA, isogg wiki
- Ancient mtDNA, isogg wiki
- Ancient DNA Archived 2020-03-06 at the Wayback Machine, y-str.org
- Evidence of the Past: A Map and Status of Ancient Remains – samples from USA no sequence data here.
- "Unravelling the mummy mystery – using DNA". Archived from the original on December 14, 2009 – no data on YDNA only mtDNA