Natural killer cell
Natural killer cell | |
---|---|
![]() Human natural killer cell, colorized scanning electron micrograph | |
Details | |
System | Immune system |
Function | Cytotoxic lymphocyte |
Identifiers | |
MeSH | D007694 |
FMA | 63147 |
Anatomical terms of microanatomy |
Natural killer cells, also known as NK cells, are a type of
NK cells can be identified by the presence of
Outside of
Early history
In early experiments on cell-mediated cytotoxicity against tumor target cells, both in cancer patients and animal models, investigators consistently observed what was termed a "natural" reactivity; that is, a certain population of cells seemed to be able to destroy tumor cells without having been previously sensitized to them. The first published study to assert that untreated lymphoid cells were able to confer a natural immunity to tumors was performed by Dr. Henry Smith at the University of Leeds School of Medicine in 1966,[15] leading to the conclusion that the "phenomenon appear[ed] to be an expression of defense mechanisms to tumor growth present in normal mice." Other researchers had also made similar observations, but as these discoveries were inconsistent with the established model at the time, many initially considered these observations to be artifacts.[16]
By 1973, 'natural killing' activity was established across a wide variety of species, and the existence of a separate lineage of cells possessing this ability was postulated. The discovery that a unique type of lymphocyte was responsible for "natural" or spontaneous cytotoxicity was made in the early 1970s by doctoral student Rolf Kiessling and postdoctoral fellow Hugh Pross, in the mouse,
Using discontinuous density centrifugation, and later
Types
NK cells can be classified as CD56bright or CD56dim.[24][25][5] CD56bright NK cells are similar to T helper cells in exerting their influence by releasing cytokines.[25] CD56bright NK cells constitute the majority of NK cells, being found in bone marrow, secondary lymphoid tissue, liver, and skin.[5] CD56bright NK cells are characterized by their preferential killing of highly proliferative cells,[26] and thus might have an immunoregulatory role. CD56dim NK cells are primarily found in the peripheral blood,[5] and are characterized by their cell killing ability.[25] CD56dim NK cells are always CD16 positive (CD16 is the key mediator of antibody-dependent cellular cytotoxicity, or ADCC).[25] CD56bright can transition into CD56dim by acquiring CD16.[5]
NK cells can eliminate virus-infected cells via CD16-mediated ADCC.
Receptors

NK cell receptors can also be differentiated based on function. Natural cytotoxicity receptors directly induce apoptosis (cell death) after binding to Fas ligand that directly indicate infection of a cell. The MHC-independent receptors (described above) use an alternate pathway to induce apoptosis in infected cells. Natural killer cell activation is determined by the balance of inhibitory and activating receptor stimulation. For example, if the inhibitory receptor signaling is more prominent, then NK cell activity will be inhibited; similarly, if the activating signal is dominant, then NK cell activation will result.[28]

NK cell receptor types (with inhibitory, as well as some activating members) are differentiated by structure, with a few examples to follow:

Activating receptors
- MHC Imolecules.
- NCR (natural cytotoxicity receptors), type 1 transmembrane proteins of the immunoglobulin superfamily, upon stimulation mediate NK killing and release of PCNA.
- antibody-dependent cell-mediated cytotoxicity; in particular, they bind immunoglobulin G.
- TRIF and TLR-4 can switch between signaling through MyD88 and TRIF respectively. Induction of different TLR leads to distinct activation of NK cell functions.[32]
Inhibitory receptors
- Killer-cell immunoglobulin-like receptors (KIRs) belong to a multigene family of more recently evolved Ig-like extracellular domain receptors; they are present in nonhuman primates, and are the main receptors for both classical MHC I (HLA-A, HLA-B, HLA-C) and nonclassical Mamu-G (HLA-G) in primates. Some KIRs are specific for certain HLA subtypes. Most KIRs are inhibitory and dominant. Regular cells express MHC class 1, so are recognised by KIR receptors and NK cell killing is inhibited.[8]
- CD94/NKG2 (heterodimers), a C-type lectin family receptor, is conserved in both rodents and primates and identifies nonclassical (also nonpolymorphic) MHC I molecules such as HLA-E. Expression of HLA-E at the cell surface is dependent on the presence of nonamer peptide epitope derived from the signal sequence of classical MHC class I molecules, which is generated by the sequential action of signal peptide peptidase and the proteasome. Though indirect, this is a way to survey the levels of classical (polymorphic) HLA molecules.
- ILT or LIR (immunoglobulin-like receptor) – are recently discovered members of the Ig receptor family.
- Ly49 (homodimers) have both activating and inhibitory isoforms. They are highly polymorphic on the population level; though they are structurally unrelated to KIRs, they are the functional homologues of KIRs in mice, including the expression pattern. Ly49s are receptor for classical (polymorphic) MHC I molecules.
Function
Cytolytic granule mediated cell apoptosis
NK cells are
Antibody-dependent cell-mediated cytotoxicity (ADCC)
Infected cells are routinely
Cytokine-induced NK and Cytotoxic T lymphocyte (CTL) activation
Missing 'self' hypothesis
For NK cells to defend the body against
The inhibitory receptors recognize
Tumor cell surveillance
Natural killer cells often lack antigen-specific cell surface receptors, so are part of innate immunity, i.e. able to react immediately with no prior exposure to the pathogen. In both mice and humans, NKs can be seen to play a role in tumor immunosurveillance by directly inducing the death of tumor cells (NKs act as cytolytic effector lymphocytes), even in the absence of surface adhesion molecules and antigenic peptides. This role of NK cells is critical to immune success particularly because T cells are unable to recognize pathogens in the absence of surface antigens.[4] Tumor cell detection results in activation of NK cells and consequent cytokine production and release.
If tumor cells do not cause inflammation, they will also be regarded as self and will not induce a T cell response. A number of cytokines are produced by NKs, including tumor necrosis factor α (
NK cells, along with macrophages and several other cell types, express the Fc receptor (FcR) molecule (FC-gamma-RIII = CD16), an activating biochemical receptor that binds the Fc portion of IgG class antibodies. This allows NK cells to target cells against which there has been a humoral response and to lyse cells through antibody-dependant cytotoxicity (ADCC). This response depends on the affinity of the Fc receptor expressed on NK cells, which can have high, intermediate, and low affinity for the Fc portion of the antibody. This affinity is determined by the amino acid in position 158 of the protein, which can be phenylalanine (F allele) or valine (V allele). Individuals with high-affinity FcRgammRIII (158 V/V allele) respond better to antibody therapy. This has been shown for lymphoma patients who received the antibody Rituxan. Patients who express the 158 V/V allele had a better antitumor response. Only 15–25% of the population expresses the 158 V/V allele. To determine the ADCC contribution of monoclonal antibodies, NK-92 cells (a "pure" NK cell line) has been transfected with the gene for the high-affinity FcR.
Clearance of senescent cells
Natural killer cells (NK cells) and macrophages play a major role in clearance of senescent cells.[35] Natural killer cells directly kill senescent cells, and produce cytokines which activate macrophages which remove senescent cells.[35]
Natural killer cells can use
Adaptive features of NK cells—"memory-like", "adaptive" and memory NK cells
The ability to generate memory cells following a primary infection and the consequent rapid immune activation and response to succeeding infections by the same antigen is fundamental to the role that T and B cells play in the adaptive immune response. For many years, NK cells have been considered to be a part of the innate immune system. However, recently increasing evidence suggests that NK cells can display several features that are usually attributed to adaptive immune cells (e.g. T cell responses) such as dynamic expansion and contraction of subsets, increased longevity and a form of immunological memory, characterized by a more potent response upon secondary challenge with the same antigen.[38][39] In mice, the majority of research was carried out with murine cytomegalovirus (MCMV) and in models of hapten-hypersensitivity reactions. Especially, in the MCMV model, protective memory functions of MCMV-induced NK cells were discovered[40] and direct recognition of the MCMV-ligand m157 by the receptor Ly49 was demonstrated to be crucial for the generation of adaptive NK cell responses.[40] In humans, most studies have focused on the expansion of an NK cell subset carrying the activating receptor
. However, whether these virus infections trigger the expansion of adaptive NKG2C+ NK cells or whether other infections result in re-activation of latent HCMV (as suggested for hepatitisNK cell function in pregnancy
As the majority of pregnancies involve two parents who are not tissue-matched, successful
These NK cells have the ability to elicit cell cytotoxicity in vitro, but at a lower level than peripheral NK cells, despite containing
Uterine NK cells have shown no significant difference in women with recurrent miscarriage compared with controls. However, higher peripheral NK cell percentages occur in women with recurrent miscarriages than in control groups.[47]
NK cells secrete a high level of cytokines which help mediate their function. NK cells interact with
NK cell evasion by tumor cells
By shedding decoy NKG2D soluble ligands, tumor cells may avoid immune responses. These soluble NKG2D ligands bind to NK cell NKG2D receptors, activating a false NK response and consequently creating competition for the receptor site.[4] This method of evasion occurs in prostate cancer. In addition, prostate cancer tumors can evade CD8 cell recognition due to their ability to downregulate expression of MHC class 1 molecules. This example of immune evasion actually highlights NK cells' importance in tumor surveillance and response, as CD8 cells can consequently only act on tumor cells in response to NK-initiated cytokine production (adaptive immune response).[49]
Excessive NK cells
Experimental treatments with NK cells have resulted in excessive cytokine production, and even septic shock. Depletion of the inflammatory cytokine interferon gamma reversed the effect.[citation needed]
Applications
Anticancer therapy
Tumor-infiltrating NK cells have been reported to play a critical role in promoting drug-induced cell death in human triple-negative breast cancer.[50] Since NK cells recognize target cells when they express nonself HLA antigens (but not self), autologous (patients' own) NK cell infusions have not shown any antitumor effects. Instead, investigators are working on using allogeneic cells from peripheral blood, which requires that all T cells be removed before infusion into the patients to remove the risk of graft versus host disease, which can be fatal. This can be achieved using an immunomagnetic column (CliniMACS). In addition, because of the limited number of NK cells in blood (only 10% of lymphocytes are NK cells), their number needs to be expanded in culture. This can take a few weeks and the yield is donor-dependent.
CAR-NK cells
The use of CAR NK cells is not limited by the need to generate patient-specific cells, and at the same time, GvHD is not caused by NK cells, thus obviating the need for autologous cells.[53] Toxic effects of CAR T therapy, such as CSR, have not been observed with the use of CAR NK cells. Thus, NK cells are considered an interesting "off-the-shelf" product option. Compared to CAR T cells, CAR NK cells retain unchanged expression of NK cell activating receptors. Thus, NK cells recognize and kill tumor cells even if, due to a tumor-escape strategy on tumor cells, ligand expression for the CAR receptor is downregulated.[52]
NK cells derived from umbilical cord blood have been used to generate CAR.CD19 NK cells. These cells are capable of self-producing the cytokine IL-15, thereby enhancing autocrine/paracrine expression and persistence in vivo. Administration of these modified NK cells is not associated with the development of CSR, neurotoxicity, or GvHD.[51]
The FT596 product is the first "Off-the-Shelf", universal, and allogenic CAR NK cellular product derived from iPSCs to be authorized for use in clinical studies in the USA.[54] It consists of an anti-CD19 CAR optimized for NK cells with a transmembrane domain for the NKG2D activation receptor, a 2B4 costimulatory domain and a CD3ζ signaling domain. Two additional key components were added: 1) a high-affinity, non-cleavable Fc receptor CD16 (hnCD16) that enables tumor targeting and enhanced antibody-dependent cell cytotoxicity without negative regulation, combined with 2) a therapeutic monoclonal antibody targeting tumor cells and an IL-15/IL-15 receptor fusion protein (IL-15RF) promoting cytokine-independent persistence.[55]
NK-92 cells
A more efficient way to obtain high numbers of NK cells is to expand NK-92 cells, an NK cell line with all the characteristics of highly active blood Natural Killer (NK) cells but with much broader and higher cytotoxicity. NK-92 cells grow continuously in culture and can be expanded to clinical-grade numbers in bags or bioreactors.[56] Clinical studies have shown NK-92 cells to be safe and to exhibit anti-tumor activity in patients with lung or pancreatic cancer, melanoma, and lymphoma.[57][58] When NK-92 cells originate from a patient with lymphoma, they must be irradiated prior to infusion.[59][60] Efforts, however, are being made to engineer the cells to eliminate the need for irradiation. The irradiated cells maintain full cytotoxicity. NK-92 are allogeneic (from a donor different from the recipient), but in clinical studies have not been shown to elicit significant host reaction.[61][62]
Unmodified NK-92 cells lack CD-16, making them unable to perform antibody-dependent cellular cytotoxicity (ADCC); however, the cells have been engineered to express a high affinity Fc-receptor (CD16A, 158V) genetically linked to IL-2 that is bound to the endoplasmic reticulum (ER).[63][64] These high affinity NK-92 cells can perform ADCC and have greatly expanded therapeutic utility.[65][66][67][68]
NK-92 cells have also been engineered to expressed chimeric antigen receptors (CARs), in an approach similar to that used for T cells. An example of this is an NK-92 derived cell engineered with both a CD16 and an anti-PD-L1 CAR; currently in clinical development for oncology indications.[69][70][71] A clinical grade NK-92 variant that expresses a CAR for HER2 (ErbB2) has been generated[72] and is in a clinical study in patients with HER2 positive glioblastoma.[73] Several other clinical grade clones have been generated expressing the CARs for PD-L1, CD19, HER-2, and EGFR.[74][66] PD-L1 targeted high affinity NK cells have been given to a number of patients with solid tumors in a phase I/II study, which is underway.[75]
NKG2D-Fc fusion protein
In a study at Boston Children's Hospital, in coordination with
In Hodgkin lymphoma, in which the malignant Hodgkin Reed-Sternberg cells are typically HLA class I deficient, immune evasion is in part mediated by skewing towards an exhausted PD-1hi NK cell phenotype, and re-activation of these NK cells appears to be one mechanism of action induced by checkpoint-blockade.[76]
TLR ligands
Signaling through TLR can effectively activate NK cell effector functions in vitro and in vivo. TLR ligands are then potentially able to enhance NK cell effector functions during NK cell anti-tumor immunotherapy.[30]
Stimulation of
NK cells play a role in controlling
New findings
Innate resistance to HIV
Recent research suggests specific KIR-MHC class I gene interactions might control innate genetic resistance to certain viral infections, including
NK cells can impose immune pressure on HIV, which had previously been described only for T cells and antibodies.[82] HIV mutates to avoid NK cell detection.[82]
Tissue-resident NK cells
Most of our current knowledge is derived from investigations of mouse splenic and human peripheral blood NK cells. However, in recent years tissue-resident NK cell populations have been described.[83][84] These tissue-resident NK cells share transcriptional similarity to tissue-resident memory T cells described previously. However, tissue-resident NK cells are not necessarily of the memory phenotype, and in fact, the majority of the tissue-resident NK cells are functionally immature.[85] These specialized NK-cell subsets can play a role in organ homeostasis. For example, NK cells are enriched in the human liver with a specific phenotype and take part in the control of liver fibrosis.[86][87] Tissue-resident NK cells have also been identified in sites like bone marrow, spleen and more recently, in lung, intestines and lymph nodes. In these sites, tissue-resident NK cells may act as reservoir for maintaining immature NK cells in humans throughout life.[85]
Adaptive NK cells against leukemia targets
Natural killer cells are being investigated as an emerging treatment for patients with acute myeloid leukemia (AML), and cytokine-induced memory-like NK cells have shown promise with their enhanced antileukemia functionality.[88] It has been shown that this kind of NK cell has enhanced interferon-γ production and cytotoxicity against leukemia cell lines and primary AML blasts in patients.[88] During a phase 1 clinical trial, five out of nine patients exhibited clinical responses to the treatment, and four patients experienced a complete remission, which suggests that these NK cells have major potential as a successful translational immunotherapy approach for patients with AML in the future.[88]
See also
- Active hexose correlated compound
- Granzymes
- Hematopoiesis
- Immune system
- Interleukin
- Lymphatic system
- List of distinct cell types in the adult human body
References
- ISSN 0918-2918.
- ^ "Large granular lymphocytic (LGL) leukemia". www.lls.org. Retrieved 2024-08-24.
- PMID 33761782.
- ^ PMID 21212348.
- ^ PMID 32477340.
- ^ PMID 30804475.
- PMID 29183988.
- ^ S2CID 26975415.
- PMID 17360655.
- PMID 9314561.
- S2CID 43003664.
- PMID 25175775.
- ISSN 0741-5400.
- ISSN 2575-615X.[permanent dead link]
- PMID 5964614.
- S2CID 11301147.
- S2CID 2389610.
- PMID 810282.
- S2CID 30612835.
- S2CID 24410880.
- S2CID 42635604.
- S2CID 24437710.
- PMID 7430655.
- PMID 32545516.
- ^ PMID 32762681.
- PMC 10465185.
- ^ PMID 32655581.
- ^ S2CID 27557213.
- S2CID 191147609. Retrieved 2023-06-15.
- ^ PMID 32377528.
- PMID 24678311.
- PMID 22454775.
- S2CID 1430364.
- S2CID 16655783.
- ^ S2CID 73469394.
- ^ PMID 31088710.
- PMID 32973221.
- PMID 24086127.
- S2CID 42943696.
- ^ PMID 19136945.
- PMID 15304389.
- PMID 28533779.
- S2CID 4718187.
- ^ a b c d
Lash GE, Robson SC, Bulmer JN (March 2010). "Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua". Placenta. 31 (Suppl): S87 – S92. PMID 20061017.
- ^
Bulmer JN, Williams PJ, Lash GE (2010). "Immune cells in the placental bed". The International Journal of Developmental Biology. 54 (2–3): 281–294. PMID 19876837.
- ^
Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B, Strominger JL (October 2005). "Human decidual NK cells form immature activating synapses and are not cytotoxic". Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15563–15568. PMID 16230631.
- PMID 24285824.
- PMID 10899912.
- S2CID 1459858.
- PMID 33077554.
- ^ S2CID 221143327.
- ^ PMID 31623224.
- PMID 29605760.
- S2CID 209578805.
- S2CID 228912346.
- ^ Gong JH, Maki G, Klingemann HG (April 1994). "Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells". Leukemia. 8 (4): 652–8. PMID 8152260.
- PMID 18836917.
- PMID 11522236.
- PMID 11454312.
- PMID 35366943.
- PMID 29179517.
- PMID 24094496.
- S2CID 3464303.
- PMID 30574146.
- ^ Klingemann H. "Engineered, Off the Shelf, NK Cell Lines for Targeted Cancer Immuno-therapy." Frontiers in Cancer Immunotherapy, NYAS April 26–27, 2018. www.nyas.org/Immunotherapy2018
- ^ PMID 24404423.
- ^ "NK Cell–Targeting Strategies Come into Their Own". 16 April 2021.
- S2CID 239089319.
- ^ "Open-Label Phase 1 Study of PD-L1 t-haNK in Subjects with Locally Advanced or Metastatic Solid Cancers". 9 May 2022.
- PMID 32633234.
- PMID 32439799.
- PMID 26640245.
- PMID 31798595.
- PMID 27008316.
- ^ "ImmunityBio Announces NIH-Led Research Affirming that PD-L1 T-haNK Therapy Overcomes T-Cell Escape in Multiple Types of Resistant Tumors". 22 March 2021.
- PMID 29449276.
- PMID 16971734.
- PMID 21918170.
- PMID 27622045.
- PMID 26928328.
- PMID 26889036.
- ^ PMID 21814282.
- PMID 24584057.
- PMID 24714492.
- ^ PMID 32059780.
- PMID 26330348.
- PMID 26858722.
- ^ PMID 27655849.
Further reading
- Perera Molligoda Arachchige AS (April 2021). "Human NK cells: From development to effector functions". Innate Immunity. 27 (3): 212–229. PMID 33761782.
- Abbas AK, Lichtman A (2003). Cellular and Molecular Immunology. Saunders.
- Sompayrac L (2003). How the Immune System Works (2nd ed.). Blackwell Publishing.
- Janeway Jr CA, Travers P, Walport M, Shlomchik MJ (2001). Immunobiology: The Immune System In Health And Disease (5th ed.). Garland Science. ISBN 0-8153-3642-X.
- Kindt TJ, Goldsby RA, Osborne BA. Kuby Immunology (6th ed.). New York: W.H. Freeman and Company.
External links
- Natural+Killer+Cells at the U.S. National Library of Medicine Medical Subject Headings (MeSH)