Telluric acid

Source: Wikipedia, the free encyclopedia.
Telluric acid
Skeletal formula of ortho-telluric acid
Ball-and-stick model of ortho-telluric acid
Names
IUPAC name
Hexahydroxidotellurium
Other names
  • Orthotelluric acid
  • Hexahydroxytellurium
  • Hexahydroxy-λ6-tellane
  • Tellurium hexahydroxide
  • Tellurium(VI) hydroxide
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
ECHA InfoCard
100.029.334 Edit this at Wikidata
UNII
  • InChI=1S/H2O4Te/c1-5(2,3)4/h(H2,1,2,3,4) checkY
    Key: XHGGEBRKUWZHEK-UHFFFAOYSA-N checkY
  • InChI=1/H2O4Te/c1-5(2,3)4/h(H2,1,2,3,4)
    Key: XHGGEBRKUWZHEK-UHFFFAOYAT
  • O[Te](O)(O)(O)(O)O
Properties
Te(OH)6
Molar mass 229.64 g·mol−1
Appearance White
monoclinic
crystals
Density 3.07 g/cm3
Melting point 136 °C (277 °F; 409 K)
50.1 g/(100 ml) at 30 °C[1]
Acidity (pKa) 7.68, 11.0 at 18 °C[1]
Conjugate base
Tellurate
Structure
octahedral
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
corrosive
Related compounds
Other anions
Related compounds
Teflic acid
Sulfuric acid
Selenic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Telluric acid, or more accurately

hydroxyl
(–OH) groups, thus, it can be called tellurium(VI) hydroxide. Telluric acid is a
strong bases and hydrogen tellurate salts with weaker bases or upon hydrolysis of tellurates in water.[3][4]
It is used as tellurium-source in the synthesis of oxidation catalysts.

Preparation

Telluric acid is formed by the

TeO2 + H2O2 + 2 H2O → Te(OH)6

Crystallization of telluric acid solutions below 10 °C gives telluric acid tetrahydrate Te(OH)6·4H2O.[2] It is an oxidising agent, as shown by the electrode potential for the reaction below, although it is kinetically slow in its oxidations.[3]

Te(OH)6 + 2 H+ + 2 e ⇌ TeO2 + 4 H2O, Eo = +1.02 V

Chlorine, by comparison, is +1.36 V and selenous acid is +0.74 V in oxidizing conditions.

Properties and reactions

The anhydrous acid is stable in air at 100 °C but above this it dehydrates to form polymetatelluric acid, a white hygroscopic powder (approximate composition (H2TeO4)10), and allotelluric acid, an acid syrup of unknown structure (approximate composition 3·H2TeO4·4H2O).[5][2]

Typical salts of the acid contains the anions [Te(O)(OH)5] and [Te(O)2(OH)4]2−. The presence of the tellurate ion TeO2−4 has been confirmed in the solid state structure of Rb6[TeO5][TeO4].[6] Strong heating at over 300 °C produces the α crystalline modification of tellurium trioxide, α-TeO3. [4] Reaction with diazomethane gives the hexamethyl ester, Te(OCH3)6.[2]

Telluric acid and its salts mostly contain hexacoordinate tellurium.[3] This is true even for salts such as magnesium tellurate, MgTeO4, which is isostructural with magnesium molybdate and contains TeO6 octahedra.[3]

Other forms of telluric acid

Metatelluric acid, H2TeO4, the tellurium analogue of sulfuric acid, H2SO4, is unknown. Allotelluric acid of approximate composition 3·H2TeO4·4H2O, is not well characterised and may be a mixture of Te(OH)6 and (H2TeO4)n.[2]

Other tellurium acids

Tellurous acid H2TeO3, containing tellurium in its +4 oxidation state, is known but not well characterised.

hydrotelluric acid
upon addition to water.

References

  1. ^ a b Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press,
  2. ^ .
  3. ^
  4. ^ .
  5. .
  6. .