User:MajoranaF/sandbox/Cosmological Constant

Source: Wikipedia, the free encyclopedia.
timeline of the Universe in the ΛCDM model. The accelerated expansion in the last third of the timeline represents the dark-energy dominated era
.

In

field equations of general relativity. It is closely associated to the concepts of dark energy and quintessence.[1]

Einstein originally introduced the concept in 1917[2] to counterbalance the effects of gravity and achieve a static universe, a notion which was the accepted view at the time. Einstein abandoned the concept in 1931 after Hubble's discovery of the expanding universe.[3] From the 1930s until the late 1990s, most physicists assumed the cosmological constant to be equal to zero.[4] That changed with the surprising discovery in 1998 that the expansion of the universe is accelerating, implying the possibility of a positive nonzero value for the cosmological constant.[5]

Since the 1990s, studies have shown that around 68% of the mass–energy density of the universe can be attributed to so-called dark energy.[6] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the current standard model of cosmology known as the ΛCDM model. While dark energy is poorly understood at a fundamental level, the main required properties of dark energy are that it functions as a type of anti-gravity, it dilutes much more slowly than matter as the universe expands, and it clusters much more weakly than matter, or perhaps not at all.[citation needed]

According to

quantum fields. All these quantum fields exhibit fluctuations in their ground state (lowest energy density) arising from the zero-point energy present everywhere in space. These zero-point fluctuations should act as a contribution to the cosmological constant Λ, but when calculations are performed these fluctuations give rise to an enormous vacuum energy.[7] The discrepancy between theorized vacuum energy from QFT and observed vacuum energy from cosmology is a source of major contention, with the values predicted exceeding observation by some 120 orders of magnitude, a discrepancy that has been called "the worst theoretical prediction in the history of physics!".Cite error: The <ref> tag has too many names (see the help page). This issue is called the cosmological constant problem and it is one of the greatest unsolved mysteries in physics with many physicists believing that "the vacuum holds the key to a full understanding of nature".[8]

History

red shift—as his "biggest blunder".[9]

In fact, adding the cosmological constant to Einstein's equations does not lead to a static universe at equilibrium because the

equilibrium is unstable: if the universe expands slightly, then the expansion releases vacuum energy, which causes yet more expansion. Likewise, a universe that contracts slightly will continue contracting.[10]

However, the cosmological constant remained a subject of theoretical and empirical interest. Empirically, the onslaught of cosmological data in the past decades strongly suggests that our universe has a positive cosmological constant.[5] The explanation of this small but positive value is an outstanding theoretical challenge, the so-called cosmological constant problem.

Some early generalizations of Einstein's gravitational theory, known as

Arthur Stanley Eddington claimed that the cosmological constant version of the vacuum field equation expressed the "epistemological" property that the universe is "self-gauging", and Erwin Schrödinger's pure-affine theory using a simple variational principle
produced the field equation with a cosmological term.

Equation

Estimated ratios of dark matter and dark energy (which may be the cosmological constant[1]) in the universe. According to current theories of physics, dark energy now dominates as the largest source of energy of the universe, in contrast to earlier epochs when it was insignificant.

The cosmological constant appears in Einstein's field equation in the form

where the Ricci tensor/scalar

R and the metric tensor g describe the structure of spacetime, the stress-energy tensor T describes the energy and momentum density and flux of the matter in that point in spacetime, and the universal constants G and c are conversion factors that arise from using traditional units of measurement. When Λ is zero, this reduces to the field equation of general relativity usually used in the mid-20th century. When T is zero, the field equation describes empty space (the vacuum
).

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρvac (and an associated pressure). In this context, it is commonly moved onto the right-hand side of the equation, and defined with a proportionality factor of 8π: Λ = 8πρvac, where unit conventions of general relativity are used (otherwise factors of G and c would also appear, i.e. Λ = 8π(G/c2)ρvac = κρvac, where κ is Einstein's constant). It is common to quote values of energy density directly, though still using the name "cosmological constant", with convention 8πG = 1. The true dimension of Λ is a length−2.

Given the Planck (2018) values of ΩΛ = 0.6889±0.0056 and H0 = 67.66±0.42 (km/s)/Mpc = (2.1927664±0.0136)×10−18 s−1, Λ has the value of

[11]

or 2.888×10−122 in reduced Planck units or 4.33×10−66 eV2 in natural units.

A positive vacuum energy density resulting from a cosmological constant implies a negative pressure, and vice versa. If the energy density is positive, the associated negative pressure will drive an accelerated expansion of the universe, as observed. (See

cosmic inflation
for details.)

ΩΛ (Omega Lambda)

Instead of the cosmological constant itself, cosmologists often refer to the ratio between the energy density due to the cosmological constant and the

Planck Collaboration in 2018.[12]

In a flat universe, ΩΛ is the fraction of the energy of the universe due to the cosmological constant, i.e., what we would intuitively call the fraction of the universe that is made up of dark energy. Note that this value changes over time: the critical density changes with

cosmological time, but the energy density due to the cosmological constant remains unchanged throughout the history of the universe: the amount of dark energy increases as the universe grows, while the amount of matter does not.[citation needed
]

Equation of state

Another ratio that is used by scientists is the equation of state, usually denoted w, which is the ratio of pressure that dark energy puts on the universe to the energy per unit volume.[13] This ratio is w = −1 for a true cosmological constant, and is generally different for alternative time-varying forms of vacuum energy such as quintessence. The Planck Collaboration (2018) has measured w = −1.028±0.032, consistent with −1, assuming no evolution in w over cosmic time.

Positive value

Lambda-CDM, accelerated expansion of the universe. The time-line in this schematic diagram extends from the Big Bang/inflation era 13.7 Byr ago to the present cosmological time.

Observations announced in 1998 of distance–redshift relation for

accelerating universe, such as quintessence, but the cosmological constant is in most respects the simplest solution. Thus, the current standard model of cosmology, the Lambda-CDM model, includes the cosmological constant, which is measured to be on the order of 10−52 m−2, in metric units. It is often expressed as 10−35 s−2 or 10−122[16]
in other unit systems. The value is based on recent measurements of vacuum energy density, ,[17] or 10−47 GeV4, 10−29 g/cm3 in other unit systems.

As was only recently seen, by works of

't Hooft, Susskind and others, a positive cosmological constant has surprising consequences, such as a finite maximum entropy of the observable universe (see the holographic principle).[18]

Predictions

Quantum field theory

Unsolved problem in physics:

Why does the zero-point energy of the quantum vacuum not cause a large cosmological constant? What cancels it out?

A major outstanding

problem is that most quantum field theories predict a huge value for the quantum vacuum. A common assumption is that the quantum vacuum is equivalent to the cosmological constant. Although no theory exists that supports this assumption, arguments can be made in its favor.[19]

Such arguments are usually based on

Planck scale
, then we would expect a cosmological constant of the order of ( in natural unit or in reduced Planck unit). As noted above, the measured cosmological constant is smaller than this by a factor of ~10−120. This discrepancy has been called "the worst theoretical prediction in the history of physics!".Cite error: The <ref> tag has too many names (see the
help page).

Some supersymmetric theories require a cosmological constant that is exactly zero, which further complicates things. This is the cosmological constant problem, the worst problem of fine-tuning in physics: there is no known natural way to derive the tiny cosmological constant used in cosmology from particle physics.

Anthropic principle

One possible explanation for the small but non-zero value was noted by Steven Weinberg in 1987 following the anthropic principle.[20] Weinberg explains that if the vacuum energy took different values in different domains of the universe, then observers would necessarily measure values similar to that which is observed: the formation of life-supporting structures would be suppressed in domains where the vacuum energy is much larger. Specifically, if the vacuum energy is negative and its absolute value is substantially larger than it appears to be in the observed universe (say, a factor of 10 larger), holding all other variables (e.g. matter density) constant, that would mean that the universe is closed; furthermore, its lifetime would be shorter than the age of our universe, possibly too short for intelligent life to form. On the other hand, a universe with a large positive cosmological constant would expand too fast, preventing galaxy formation. According to Weinberg, domains where the vacuum energy is compatible with life would be comparatively rare. Using this argument, Weinberg predicted that the cosmological constant would have a value of less than a hundred times the currently accepted value.[21] In 1992, Weinberg refined this prediction of the cosmological constant to 5 to 10 times the matter density.[22]

This argument depends on a lack of a variation of the distribution (spatial or otherwise) in the vacuum energy density, as would be expected if dark energy were the cosmological constant. There is no evidence that the vacuum energy does vary, but it may be the case if, for example, the vacuum energy is (even in part) the potential of a scalar field such as the residual inflaton (also see quintessence). Another theoretical approach that deals with the issue is that of multiverse theories, which predict a large number of "parallel" universes with different laws of physics and/or values of fundamental constants. Again, the anthropic principle states that we can only live in one of the universes that is compatible with some form of intelligent life. Critics claim that these theories, when used as an explanation for fine-tuning, commit the inverse gambler's fallacy.

In 1995, Weinberg's argument was refined by Alexander Vilenkin to predict a value for the cosmological constant that was only ten times the matter density,[23] i.e. about three times the current value since determined.

See also

References

Notes

Footnotes

  1. ^ a b It may well be that dark energy is explained by a static cosmological constant, or that this mysterious energy is not constant at all and has changed over time, as in the case with quintessence, see for example:
    • "Physics invites the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; nowadays the concept is termed dark energy or quintessence." Peebles & Ratra (2003), p. 1
    • "It would then appear that the cosmological fluid is dominated by some sort of fantastic energy density, which has negative pressure, and has just begun to play an important role today. No convincing theory has yet been constructed to explain this state of affairs, although cosmological models based on a dark energy component, such as the cosmological constant (Λ) or quintessence (Q),are leading candidates." Caldwell (2002), p. 2
  2. ^ Einstein (1917)
  3. ^ a b Rugh & Zinkernagel (2001), p. 3
  4. ^ On the Cosmological Constant being thought to have zero value see for example:
    • "Since the cosmological upper bound on was vastly less than any value expected from particle theory, most particle theorists simply assumed that for some unknown reason this quantity was zero." Weinberg (1989), p. 3
    • "An epochal astronomical discovery would be to establish by convincing observation that Λ is nonzero."Carroll, Press & Turner (1992), p. 500
    • "Before 1998, there was no direct astronomical evidence for Λ and the observational upper bound was so strong – Λ < 10−120 Planck units –that many particle physicists suspected that some fundamental principle must force its value to be precisely zero." Barrow & Shaw (2011), p. 1
    • "The only other natural value is Λ = 0. If Λ really is tiny but not zero, it adds a most stimulating though enigmatic clue to physics to be discovered." Peebles & Ratra (2003), p. 333
  5. ^ a b c See for example:
  6. ^ Redd (2013)
  7. ^ Rugh & Zinkernagel (2001), p. 1
  8. ^ See for example:
    • "the vacuum holds the key to a full understanding of nature" Davies (1985), p. 104
    • "The theoretical problem of explaining the cosmological constant is one of the greatest challenges of theoretical physics. It is most likely that we require a fully developed theory of quantum gravity (perhaps superstring theory) before we can understand Λ." Hobson, Efstathiou & Lasenby (2006), p. 188
  9. ^ There is some debate over whether Einstein labelled the cosmological constant his “biggest blunder”, with all references being traced back to a single person, George Gamow (See Gamow (1956, 1970)) . For example:
    • "Astrophysicist and author Mario Livio can find no documentation that puts those words into Einstein's mouth (or, for that matter, his pen). Instead, all references eventually lead back to one man, physicist George Gamow, who reported Einstein's use of the phrase in two sources: his posthumously published autobiography My World Line (1970) and a Scientific American article from September 1956." Rosen (2013)
    • " We also find it quite plausible that Einstein made such a statement to Gamow in particular. We conclude that there is little doubt that Einstein came to view the introduction of the cosmological constant a serious error, and that it is very plausible that he labelled the term his “biggest blunder” on at least one occasion" O'Raifeartaigh & Mitton (2018), p. 1
  10. ^ Ryden (2003), p. 59
  11. ^ Λ is evaluated as 3 (H0/c)2 ΩΛ.
  12. ^ Planck Collaboration (2018)
  13. ^ Brumfiel (2007), p. 246
  14. ^ See e.g. Baker et al. (1999)
  15. ^ See for example Table 9 in The Planck Collaboration (2015a), p. 27
  16. ^ Barrow & Shaw (2011)
  17. ^ Calculated based on the Hubble constant and from The Planck Collaboration (2015b)
  18. ^ Dyson, Kleban & Susskind (2002)
  19. ^ Rugh & Zinkernagel (2001), p. ?
  20. ^ Weinberg (1987)
  21. ^ Vilenkin (2006), pp. 138–9
  22. ^ Weinberg (1992), p. 182
  23. ^ Vilenkin (2006), p. 146

Bibliography

Primary literature

Secondary literature: news, popular science articles and books

Secondary literature: review articles, monographs and textbooks

External links