Ediacaran biota

Listen to this article
Source: Wikipedia, the free encyclopedia.

Life in the Ediacaran Period as imagined by researchers in 1980.

The Ediacaran (

sessile, organisms.[1][2] Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.[3]

The Ediacaran biota may have undergone evolutionary radiation in a proposed event called the Avalon explosion, 575 million years ago.[4][5] This was after the Earth had thawed from the Cryogenian period's extensive glaciation. This biota largely disappeared with the rapid increase in biodiversity known as the Cambrian explosion. Most of the currently existing body plans of animals first appeared in the fossil record of the Cambrian rather than the Ediacaran. For macroorganisms, the Cambrian biota appears to have almost completely replaced the organisms that dominated the Ediacaran fossil record, although relationships are still a matter of debate.

The organisms of the Ediacaran Period first appeared around 600 million years ago and flourished until the cusp of the

preservation bias, a changing environment, the advent of predators and competition from other life-forms. A sampling, reported in 2018, of late Ediacaran strata across the scattered remnants of Baltica (< 560 Mya) suggests the flourishing of the organisms coincided with conditions of low overall productivity with a very high percentage produced by bacteria, which may have led to high concentrations of dissolved organic material in the oceans.[10]

Determining where Ediacaran organisms fit in the

palaeontologists have suggested that these represent completely extinct lineages that do not resemble any living organism. Palaeontologist Adolf Seilacher proposed a separate subkingdom level category Vendozoa (now renamed Vendobionta)[15] in the Linnaean hierarchy for the Ediacaran biota. If these enigmatic organisms left no descendants, their strange forms might be seen as a "failed experiment" in multicellular life, with later multicellular life evolving independently from unrelated single-celled organisms.[16] A 2018 study confirmed that one of the period's most-prominent and iconic fossils, Dickinsonia, included cholesterol,[17] suggesting affinities to animals, fungi, or red algae.[18]

Charnia
Axis scale: million years
References: Waggoner (1998),[19] Hofmann, Narbonne, & Aitken (1990)[20]

History

The first Ediacaran fossils discovered were the disc-shaped Aspidella terranovica in 1868. Their discoverer, Scottish geologist Alexander Murray, found them useful aids for correlating the age of rocks around Newfoundland.[21] However, since they lay below the "Primordial Strata" of the Cambrian that was then thought to contain the very first signs of animal life, a proposal four years after their discovery by Elkanah Billings that these simple forms represented fauna was dismissed by his peers. Instead, they were interpreted as gas escape structures or inorganic concretions.[21] No similar structures elsewhere in the world were then known and the one-sided debate soon fell into obscurity.[21] In 1933, Georg Gürich discovered specimens in Namibia but assigned them to the Cambrian Period.[22] In 1946, Reg Sprigg noticed "jellyfishes" in the Ediacara Hills of Australia's Flinders Ranges, which were at the time believed to be Early Cambrian.[23]

Palaeontologist Guy Narbonne examining Ediacaran fossils in Newfoundland

It was not until the British discovery of the iconic Charnia that the Precambrian was seriously considered as containing life. This frond-shaped fossil was found in England's Charnwood Forest first by a 15 year-old girl in 1956 (Tina Negus, who was not believed[24][a]) and then the next year by a group of three schoolboys including 15 year-old Roger Mason.[25][26][27] Due to the detailed geological mapping of the British Geological Survey, there was no doubt these fossils sat in Precambrian rocks. Palaeontologist Martin Glaessner finally, in 1959, made the connection between this and the earlier finds[28][29] and with a combination of improved dating of existing specimens and an injection of vigour into the search, many more instances were recognised.[30]

All specimens discovered until 1967 were in coarse-grained

Mistaken Point assemblage in Newfoundland changed all this as the delicate detail preserved by the fine ash allowed the description of features that were previously undiscernible.[31][32] It was also the first discovery of Ediacarans in deep water sediments.[33]

Poor communication, combined with the difficulty in correlating globally distinct

formations
, led to a plethora of different names for the biota. In 1960 the French name "Ediacarien" – after the Ediacara Hills – was added to the competing terms "Sinian" and "Vendian"
period of the Neoproterozoic after the Australian locality.[35]

The term "Ediacaran biota" and similar ("Ediacara" / "Ediacaran" / "Ediacarian" / "Vendian" and "fauna" / "biota") has, at various times, been used in a geographic, stratigraphic, taphonomic, or biological sense, with the latter the most common in modern literature.[36]

Preservation

Microbial mats

cyanobacterial-algal mat, salty lake on the White Sea
seaside

Microbial mats are areas of sediment stabilised by the presence of colonies of microbes that secrete sticky fluids or otherwise bind the sediment particles. They appear to migrate upwards when covered by a thin layer of sediment but this is an illusion caused by the colony's growth; individuals do not, themselves, move. If too thick a layer of sediment is deposited before they can grow or reproduce through it, parts of the colony will die leaving behind fossils with a characteristically wrinkled ("elephant skin") and tubercular texture.[37]

Some Ediacaran strata with the texture characteristics of microbial mats contain fossils, and Ediacaran fossils are almost always found in beds that contain these microbial mats. Although microbial mats were once widespread before the

stromatolites found in Hamelin Pool Marine Nature Reserve in Shark Bay, Western Australia, where the salt levels can be twice those of the surrounding sea.[39]

Fossilization

The fossil Charniodiscus is barely distinguishable from the "elephant skin" texture on this cast.

The preservation of Ediacaran fossils is of interest, since as soft-bodied organisms they would normally not fossilize. Further, unlike later soft-bodied fossil biota such as the Burgess Shale or Solnhofen Limestone, the Ediacaran biota is not found in a restricted environment subject to unusual local conditions: they are global. The processes that were operating must therefore have been systemic and worldwide. Something about the Ediacaran Period permitted these delicate creatures to be left behind; the fossils may have been preserved by virtue of rapid covering by ash or sand, trapping them against the mud or microbial mats on which they lived.[40] Their preservation was possibly enhanced by the high concentration of silica in the oceans before silica-secreting organisms such as sponges and diatoms became prevalent.[41] Ash beds provide more detail and can readily be dated to the nearest million years or better using radiometric dating.[42] However, it is more common to find Ediacaran fossils under sandy beds deposited by storms or in turbidites formed by high-energy bottom-scraping ocean currents.[40] Soft-bodied organisms today rarely fossilize during such events, but the presence of widespread microbial mats probably aided preservation by stabilising their impressions in the sediment below.[43]

Scale of preservation

The rate of cementation of the overlying substrate relative to the rate of decomposition of the organism determines whether the top or bottom surface of an organism is preserved. Most disc-shaped fossils decomposed before the overlying sediment was cemented, whereupon ash or sand slumped in to fill the void, leaving a cast of the organism's underside. Conversely,

quilted fossils tended to decompose after the cementation of the overlying sediment; hence their upper surfaces are preserved. Their more resistant nature is reflected in the fact that, in rare occasions, quilted fossils are found within storm beds as the high-energy sedimentation did not destroy them as it would have the less-resistant discs. Further, in some cases, the bacterial precipitation of minerals formed a "death mask", ultimately leaving a positive, cast-like impression of the organism.[44][45]

Morphology

Forms of Ediacaran fossil
The earliest discovered potential embryo, preserved within an acanthomorphic acritarch. The term 'acritarch' describes a range of unclassified cell-like fossils. The earliest discovered potential embryo, preserved within an acanthomorphic acritarch.
Tateana inflata ('Cyclomedusa' radiata) were originally believed to have been Medusoids, although recent research suggests that they were holdfasts of Petalonamids. Tateana inflata (= 'Cyclomedusa' radiata) is attachment disk of unknown organism
A cast of Charnia, the first accepted complex Precambrian organism. Charnia was once interpreted as a relative of the sea pens. A cast of Charnia
Dickinsonia displays the characteristic quilted appearance of Ediacaran enigmata. A cast of Dickinsonia
Spriggina was originally interpreted as annelid or arthropod. However, lack of known limbs, and glide reflected isomers instead of true segments, rejects any such classification despite some superficial resemblance. Spriggina may be one of the predators that led to the demise of the Ediacaran fauna
Late Ediacaran Archaeonassa-type trace fossils are commonly preserved on the top surfaces of sandstone strata. Late Ediacaran Archaeonassa-type trace fossils are commonly preserved on the top surfaces of sandstone strata
Epibaion waggoneris, chain of trace platforms and the imprint of the body of Yorgia waggoneri (right), which created these traces on microbial mat. Yorgia chain of trace platforms terminate by the body of the animal (right).

The Ediacaran biota exhibited a vast range of

symmetry were present. These organisms differed from earlier, mainly microbial, fossils in having an organised, differentiated multicellular construction and centimetre-plus sizes.[40]

These disparate morphologies can be broadly grouped into form taxa:

"Embryos"
Recent discoveries of Precambrian multicellular life have been dominated by reports of embryos, particularly from the Doushantuo Formation in China. Some finds[46] generated intense media excitement[47] though some have claimed they are instead inorganic structures formed by the precipitation of minerals on the inside of a hole.[48] Other "embryos" have been interpreted as the remains of the giant sulfur-reducing bacteria akin to Thiomargarita,[49] a view that, while it had enjoyed a notable gain of supporters[50][51] as of 2007, has since suffered following further research comparing the potential Doushantuo embryos' morphologies with those of Thiomargarita specimens, both living and in various stages of decay.[52] A recent discovery of comparable Ediacaran fossil embryos from the Portfjeld Formation in Greenland has significantly expanded the paleogeograpical occurrence of Doushantuo-type fossil "embryos" with similar biotic forms now reported from differing paleolatitudes.[53]
Microfossils dating from 632.5 million years ago – just 3 million years after the end of the Cryogenian glaciations – may represent embryonic 'resting stages' in the life cycle of the earliest known animals.[54] An alternative proposal is that these structures represent adult stages of the multicellular organisms of this period.[55] Microfossils of Caveasphaera are thought to foreshadow the evolutionary origin of animal-like embryology.[56]
Discs
Circular fossils, such as Ediacaria, Cyclomedusa, and Rugoconites led to the initial identification of Ediacaran fossils as cnidaria, which include jellyfish and corals.[23] Further examination has provided alternative interpretations of all disc-shaped fossils: not one is now confidently recognised as a jellyfish. Alternate explanations include holdfasts and protists;[57] the patterns displayed where two meet have led to many 'individuals' being identified as microbial colonies,[58][59] and yet others may represent scratch marks formed as stalked organisms spun around their holdfasts.[60]
Bags
Fossils such as Pteridinium preserved within sediment layers resemble "mud-filled bags". The scientific community is a long way from reaching a consensus on their interpretation.[61]
Toroids
The fossil Vendoglossa tuberculata from the Nama Group, Namibia, has been interpreted as a dorso-ventrally compressed stem-group metazoan, with a large gut cavity and a transversely ridged ectoderm. The organism is in the shape of a flattened torus, with the long axis of its toroidal body running through the approximate center of the presumed gut cavity.[62]
Quilted organisms
The organisms considered in Seilacher's revised definition of the Vendobionta
erniettomorphs.[64] Including such fossils as the iconic Charnia and Swartpuntia, the group is both the most iconic of the Ediacaran biota and the most difficult to place within the existing tree of life. Lacking any mouth, gut, reproductive organs, or indeed any evidence of internal anatomy, their lifestyle was somewhat peculiar by modern standards; the most widely accepted hypothesis holds that they sucked nutrients out of the surrounding seawater by osmotrophy[65] or osmosis.[66] However, others argue against this.[67]
Non-Vendobionts
Possible
algæ, protists and bacteria are all easily recognisable with some pre-dating the Ediacaran by nearly three billion years. Possible arthropods have also been described.[78] Surface trails left by Treptichnus bear similarities to modern priapulids. Fossils of the hard-shelled foraminifera Platysolenites are known from the latest Ediacaran of western Siberia, coexisting with Cloudina and Namacalathus.[79]
Filaments
Filament-shaped structures in Precambrian fossils have been observed on many occasions. Frondose fossils in Newfoundland have been observed to have developed filamentous bedding planes, inferred to be stolonic outgrowths.[80] A study of Brazilian Ediacaran fossils found filamentous microfossils, suggested to be eukaryotes or large sulfur-oxidizing-bacteria (SOBs).[81] Fungus-like filaments found in the Doushantuo Formation have been interpreted as eukaryotes and possibly fungi, providing possible evidence for the evolution and terrestrialization of fungi ~635 Ma.[82]
Trace fossils
With the exception of some very simple vertical burrows[83] the only Ediacaran burrows are horizontal, lying on or just below the surface of the seafloor. Such burrows have been taken to imply the presence of motile organisms with heads, which would probably have had a bilateral symmetry. This could place them in the bilateral clade of animals[84] but they could also have been made by simpler organisms feeding as they slowly rolled along the sea floor.[85] Putative "burrows" dating as far back as 1,100 million years may have been made by animals that fed on the undersides of microbial mats, which would have shielded them from a chemically unpleasant ocean;[86] however their uneven width and tapering ends make a biological origin so difficult to defend[87] that even the original proponent no longer believes they are authentic.[88]
The burrows observed imply simple behaviour, and the complex efficient feeding traces common from the start of the Cambrian are absent. Some Ediacaran fossils, especially discs, have been interpreted tentatively as trace fossils but this hypothesis has not gained widespread acceptance. As well as burrows, some trace fossils have been found directly associated with an Ediacaran fossil.
mollusc Kimberella is associated with scratch marks, perhaps formed by a radula.[91]

Classification and interpretation

A reconstruction of the Ediacaran biota at the Field Museum in Chicago

Classification of the Ediacarans is inevitably difficult, hence a variety of theories exist as to their placement on the tree of life.

Martin Glaessner proposed in The Dawn of Animal Life (1984) that the Ediacaran biota were recognizable crown group members of modern phyla, but were unfamiliar because they had yet to evolve the characteristic features we use in modern classification.[92]

In 1998

Mark McMenamin claimed Ediacarans did not possess an embryonic stage, and thus could not be animals. He believed that they independently evolved a nervous system and brains, meaning that "the path toward intelligent life was embarked upon more than once on this planet".[57]

In 2018 analysis of ancient sterols was taken as evidence that one of the period's most-prominent and iconic fossils, Dickinsonia, was an early animal.[17]

Cnidarians

A sea pen, a modern cnidarian bearing a passing resemblance to Charnia

Since the most primitive

cnidarians, and the first recognized Ediacaran fossil Charnia looks very much like a sea pen, the first attempt to categorise these fossils designated them as jellyfish and sea pens.[93] However, more recent discoveries have established that many of the circular forms formerly considered "cnidarian medusa" are actually holdfasts – sand-filled vesicles occurring at the base of the stem of upright frond-like Ediacarans. A notable example is the form known as Charniodiscus, a circular impression later found to be attached to the long 'stem' of a frond-like organism that now bears the name.[94][95]

The link between frond-like Ediacarans and sea pens has been thrown into doubt by multiple lines of evidence; chiefly the derived nature of the most frond-like pennatulacean octocorals, their absence from the fossil record before the Tertiary, and the apparent cohesion between segments in Ediacaran frond-like organisms.[96] Some researchers have suggested that an analysis of "growth poles" discredits the pennatulacean nature of Ediacaran fronds.[97][98]

Protozoans

Galapagos Rift

xenophyophores are giant single-celled protozoans found throughout the world's oceans, largely on the abyssal plain. Genomic evidence suggests that the xenophyophores are a specialised group of Foraminifera.[100]

Unique phyla

Seilacher has suggested that the Ediacaran organisms represented a unique and extinct grouping of related forms descended from a common ancestor (

Mark McMenamin saw such feeding strategies as characteristic for the entire biota, and referred to the marine biota of this period as a "Garden of Ediacara".[104]

Lichen hypothesis

Greg Retallack's analysis of thin sections and substrates of a variety of Ediacaran fossils.[105] His findings have been disputed by other scientists.[106][107][108]

Greg Retallack has proposed that Ediacaran organisms were lichens.[109][110] He argues that thin sections of Ediacaran fossils show lichen-like compartments and hypha-like wisps of ferruginized clay,[105] and that Ediacaran fossils have been found in strata that he interprets as desert soils.[110][111]

The suggestion has been disputed by other scientists; some have described the evidence as ambiguous and unconvincing, for instance noting that Dickinsonia fossils have been found on rippled surfaces (suggesting a marine environment), while trace fossils like Radulichnus could not have been caused by needle ice as Retallack has proposed.[106][107][108] Ben Waggoner notes that the suggestion would place the root of the Cnidaria back from around 900 mya to between 1500 mya and 2000 mya, contradicting much other evidence.[112][113] Matthew Nelsen, examining phylogenies of ascomycete fungi and chlorophyte algae (components of lichens), calibrated for time, finds no support for the hypothesis that lichens predated the vascular plants.[114]

Other interpretations

Several classifications have been used to accommodate the Ediacaran biota at some point,

microbial colonies,[58] to hypothetical intermediates between plants and animals.[11]

A new extant genus discovered in 2014,

siphonophore, possibly even sections of a more complex species.[120]

Origin

It took almost 4 billion years from the formation of the Earth for Ediacaran fossils to first appear, 655 million years ago. While putative fossils are reported from 3,460 million years ago,[121][122] the first uncontroversial evidence for life is found 2,700 million years ago,[123] and cells with nuclei certainly existed by 1,200 million years ago.[124]

It could be that no special explanation is required: the slow process of evolution simply required 4 billion years to accumulate the necessary adaptations. Indeed, there does seem to be a slow increase in the maximum level of complexity seen over this time, with more and more

complex forms of life evolving as time progresses, with traces of earlier semi-complex life such as Nimbia, found in the 610 million year old Twitya formation,[125] and older rocks dating to 770 million years ago in Kazakhstan.[126]

Global ice sheets might have delayed or prevented the establishment of multicellular life.

On the early Earth, reactive elements, such as iron and uranium, existed in a reduced form that would react with any free oxygen produced by photosynthesising organisms. Oxygen would not be able to build up in the atmosphere until all the iron had rusted (producing banded iron formations), and all the other reactive elements had been oxidised. Donald Canfield detected records of the first significant quantities of atmospheric oxygen just before the first Ediacaran fossils appeared[127] – and the presence of atmospheric oxygen was soon heralded as a possible trigger for the Ediacaran radiation.[128] Oxygen seems to have accumulated in two pulses; the rise of small, sessile (stationary) organisms seems to correlate with an early oxygenation event, with larger and mobile organisms appearing around the second pulse of oxygenation.[129] However, the assumptions underlying the reconstruction of atmospheric composition have attracted some criticism, with widespread anoxia having little effect on life where it occurs in the Early Cambrian and the Cretaceous.[130]

Periods of intense cold have also been suggested as a barrier to the evolution of multicellular life. The earliest known embryos, from China's Doushantuo Formation, appear just a million years after the Earth emerged from a global glaciation, suggesting that ice cover and cold oceans may have prevented the emergence of multicellular life.[131]

In early 2008, a team analysed the range of basic body structures ("disparity") of Ediacaran organisms from three different fossil beds: Avalon in Canada, 575 million years ago to 565 million years ago; White Sea in Russia, 560 million years ago to 550 million years ago; and Nama in Namibia, 550 million years ago to 542 million years ago, immediately before the start of the Cambrian. They found that, while the White Sea assemblage had the most species, there was no significant difference in disparity between the three groups, and concluded that before the beginning of the Avalon timespan these organisms must have gone through their own evolutionary "explosion", which may have been similar to the famous Cambrian explosion.[132]

Preservation bias

The paucity of Ediacaran fossils after the Cambrian could simply be due to conditions no longer favoring the fossilization of Ediacaran organisms, which may have continued to thrive unpreserved for a considerable time.

Chengjiang.[134] Although no reports of Ediacara-type organisms in the Cambrian period are widely accepted at present, a few disputed reports have been made, as well as unpublished observations of 'vendobiont' fossils from 535 Ma Orsten-type deposits in China.[135]

Predation and grazing

Kimberella might have had a predatory or grazing lifestyle.

It has been suggested that by the Early Cambrian, organisms higher in the

substrate destabilized the ecosystem, causing extinctions.[136][137]

Alternatively, skeletonized animals could have fed directly on the relatively undefended Ediacaran biota.[57] However, if the interpretation of the Ediacaran age Kimberella as a grazer is correct then this suggests that the biota had already had limited exposure to "predation".[70]

Competition

Cambrian animals such as Waptia might have competed with, or fed upon, Ediacaran life-forms.

Increased competition due to the evolution of key innovations among other groups, perhaps as a response to predation, may have driven the Ediacaran biota from their niches.[138] However, the supposed "competitive exclusion" of brachiopods by bivalve molluscs was eventually deemed to be a coincidental result of two unrelated trends.[139]

Change in environmental conditions

Great changes were happening at the end of the Precambrian and the start of the Early Cambrian. The breakup of the

biomineralisation) could all have played a part.[145]

Assemblages

Late Ediacaran macrofossils are recognized globally in at least 52 formations and a variety of depositional conditions.[146] Each formation is commonly grouped into three main types, known as assemblages and named after typical localities. Each assemblage tends to occupy its own time period and region of morphospace, and after an initial burst of diversification (or extinction) changes little for the rest of its existence.[147]

Shuram excursion reaches its peak
Stratigraphic scale of the ICS
subdivisions and Ediacaran biotic assmblages
Vertical axis scale: millions of years ago

Avalon assemblage

The Avalon assemblage is defined at

Mistaken Point one the Avalon Peninsula of Canada, the oldest locality with a large quantity of Ediacaran fossils.[149]
The assemblage is easily dated because it contains many fine ash-beds, which are a good source of zircons used in the uranium-lead method of radiometric dating. These fine-grained ash beds also preserve exquisite detail. Constituents of this biota appear to survive through until the extinction of all Ediacarans at the base of the Cambrian.[147]

One interpretation of the biota is as deep-sea-dwelling rangeomorphs[150] such as Charnia, all of which share a fractal growth pattern. They were probably preserved in situ (without post-mortem transportation), although this point is not universally accepted. The assemblage, while less diverse than the White Sea or Nama assemblages, resembles Carboniferous suspension-feeding communities, which may suggest filter feeding as the assemblage is often found in water too deep for photosynthesis.[151]

White Sea assemblage

The White Sea or Ediacaran assemblage is named after Russia's White Sea or Australia's Ediacara Hills and is marked by much higher diversity than the Avalon or Nama assemblages.[146] In Australia, they are typically found in red gypsiferous and calcareous paleosols formed on loess and flood deposits in an arid cool temperate paleoclimate.[110] Most fossils are preserved as imprints in microbial beds,[152] but a few are preserved within sandy units.[153][147]

Nama assemblage

The Nama assemblage is best represented in

Cloudina, Namacalathus) of Ediacaran "wormworld" in marine dolomite of Namibia.[155]

Significance of assemblages

Since they are globally distributed – described on all continents except Antarctica – geographical boundaries do not appear to be a factor;[156] the same fossils are found at all palaeolatitudes (the latitude where the fossil was created, accounting for continental drift - an application of paleomagnetism) and in separate sedimentary basins.[153] An analysis of one of the White Sea fossil beds, where the layers cycle from continental seabed to inter-tidal to estuarine and back again a few times, found that a specific set of Ediacaran organisms was associated with each environment.[153] However, while there is some delineation in organisms adapted to different environments, the three assemblages are more distinct temporally than paleoenvironmentally.[157] Because of this, the three assemblages are often separated by temporal boundaries rather than environmental ones (timeline at right).

As the Ediacaran biota represent an early stage in multicellular life's history, it is unsurprising that not all possible modes of life are occupied. It has been estimated that of 92 potentially possible modes of life – combinations of feeding style, tiering and motility — no more than a dozen are occupied by the end of the Ediacaran. Just four are represented in the Avalon assemblage.[158]

See also

Notes

  1. ^ "In April 1957, I went rock-climbing in Charnwood Forest with two friends, Richard Allen and Richard Blachford ('Blach'), fellow students at Wyggeston Grammar School, Leicester. I was already interested in geology and knew that the rocks of the Charnian Supergroup were Precambrian although I had not heard of the Australian fossils.
    Richard Allen and I agree that Blach (who died in the early 1960s) drew my attention to the leaf-like fossil holotype now on display in Leicester City Museum. I took a rubbing and showed it to my father, who was Minister of the Great Meeting Unitarian Chapel in East Bond Street, taught part-time at University College (soon to be Leicester University) and thus knew Trevor Ford. We took Trevor to visit the fossil site and convinced him that it was a genuine fossil. His publication of the discovery in the Journal of the Yorkshire Geological Society established the genus Charnia and aroused worldwide interest. ... I was able to report the discovery because of my father's encouragement and the enquiring approach fostered by my science teachers. Tina Negus saw the frond before I did but no one took her seriously."[24]

References

  1. PMID 33116283
    .
  2. International Stratigraphic Commission
    . February 2022. Retrieved 22 April 2022.
  3. . Retrieved 12 March 2023.
  4. Science Daily
    (Press release). January 2008.
  5. .
  6. .
  7. .
  8. International Geological Congress. Abstracts. Oslo. Archived from the original
    on 13 October 2013.
  9. ^ a b Conway Morris, Simon (1993). "Ediacaran-like fossils in Cambrian Burgess Shale–type faunas of North America". Palaeontology. 36 (31–0239): 593–635.
  10. PMID 29728614
    .
  11. ^ a b Pflug (1973). "Zur fauna der Nama-Schichten in Südwest-Afrika. IV. Mikroscopische anatomie der petalo-organisme". Palaeontographica (in German) (B144): 166–202.
  12. S2CID 23002564
    .
  13. .
  14. ^ Amos, Jonathan (25 July 2022). "Ancient fossil is earliest known animal predator". bbc.co.uk. BBC News. Retrieved 7 August 2022.
  15. ^
    S2CID 128681462
    .
  16. ^ Narbonne, Guy (June 2006). The Origin and Early Evolution of Animals. Department of Geological Sciences and Geological Engineering. Queen's University. Archived from the original on 24 July 2015. Retrieved 8 September 2016.
  17. ^
    PMID 30237355
    .
  18. .
  19. ^ Waggoner, Ben (1998). "Interpreting the earliest Metazoan fossils: What can we learn?".
    ISSN 1540-7063
    .
  20. ^ Hofmann, H.J.; Narbonne, G.M.; Aitken, J.D. (1990). "Ediacaran remains from intertillite beds in northwestern Canada". .
  21. ^ .
  22. .
  23. ^ a b Sprigg, R. C. (1947). "Early Cambrian "jellyfishes" of Ediacara, South Australia and Mount John, Kimberly District, Western Australia". Transactions of the Royal Society of South Australia. 73: 72–99.
  24. ^ a b Mason, Roger (2007). "The discovery of Charnia masoni" (PDF). University of Leicester. Archived from the original (PDF) on 8 March 2021. Retrieved 5 April 2016.
  25. ^ "Leicester's fossil celebrity: Charnia and the evolution of early life" (PDF). Archived from the original (PDF) on 6 October 2022. Retrieved 22 June 2007.
  26. ^ Ford, Trevor. "The discovery of Charnia". Archived from the original on 23 July 2011.
  27. ^ Negus, Tina. "An account of the discovery of Charnia". Archived from the original on 23 July 2011.
  28. ^ Sprigg, R. C. (1991). "Martin F Glaessner: Palaeontologist extraordinaire". Mem. Geol. Soc. India. 20: 13–20.
  29. S2CID 140615593
    .
  30. .
  31. .
  32. on 15 January 2013.
  33. .
  34. ^ Termier, H.; Termier, G. (1960). "L'Édiacarien, premier étage paléontologique". Revue générale des sciences pures et appliquées (in French). 67 (3–4): 175–192.
  35. (PDF) on 21 February 2007.
  36. ^ MacGabhann, Breandán Anraoi (2014). "There is no such thing as the 'Ediacara Biota'". Geosciences Frontiers. 5 (1): 53–62.
  37. ^
    OCLC 23583672
    .
  38. OCLC 51852000. Archived from the original
    on 18 November 2007. Retrieved 26 August 2017.
  39. .
  40. ^ .
  41. .
  42. OCLC 51481754. Archived from the original
    on 29 September 2007. Retrieved 21 June 2007.
  43. .
  44. .
  45. .
  46. .
  47. ^ For example, "Fossil may be ancestor of most animals". NBC News. 3 June 2004. Retrieved 22 June 2007., Leslie Mullen (5 June 2004). "Earliest Bilateral Fossil Discovered". Astrobiology Magazine. Archived from the original on 28 June 2011. Retrieved 22 June 2007.
  48. ^
    PMID 15550644
    .
  49. .
  50. ^ Xiao et al..'s response to Bailey et al..'s original paper :
    Xiao, S.; Zhou, C.; Yuan, X. (April 2007). "Palaeontology: undressing and redressing Ediacaran embryos". Nature. 446 (7136): E9 – E10.
    S2CID 4406666
    .
    And Bailey et al..'s reply: Bailey, J. V.; Joye, S. B.; Kalanetra, K. M.; Flood, B. E.; Corsetti, F. A. (2007). "Palaeontology: Undressing and redressing Ediacaran embryos (Reply)". Nature. 446 (7136): E10 – E11. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .
  57. ^ .
  58. ^ a b Grazhdankin, D. (5–8 November 2001). Microbial origin of some of the Ediacaran fossils. GSA Annual Meeting. p. 177. Archived from the original on 11 September 2014. Retrieved 8 March 2007.
  59. .
  60. .
  61. ^ .
  62. .
  63. .
  64. .
  65. McMenamin, M.
    (1993). "Osmotrophy in fossil protoctists and early animals". Invertebrate Reproduction and Development. 22 (1–3): 301–304.
  66. .
  67. .
  68. .
  69. .
  70. ^ .
  71. McMenamin, M.A.S. (2003). Spriggina is a Trilobitoid Ecdysozoan. Seattle Annual Meeting of the GSA. Archived from the original
    on 30 August 2008. Retrieved 21 June 2007.
  72. ^ Glaessner, M.F. (1980). "Parvancorina – an arthropod from the late Precambrian of South Australia". Ann. Nat. Hist. Mus. Wien. 83: 83–90.
  73. ^ For a reinterpretation, see Ivantsov, A.Y.; Malakhovskaya, Y.E.; Serezhnikova, E.A. (2004). "Some problematic fossils from the Vendian of the southeastern White Sea region" (PDF). Paleontological Journal. 38 (1): 1–9. Archived from the original (PDF) on 4 July 2007. Retrieved 21 June 2007.
  74. .
  75. .
  76. .
  77. .
  78. ^ Ivantsov A.Yu. (17–21 July 2006). New find of Cambrian type arthropoda from the Vendian of the White Sea, Russia (PDF). The Second International Palaeontological Congress (abstract). Beijing, China. Archived from the original (PDF) on 25 February 2009.
  79. ISSN 1068-7971
    .
  80. .
  81. .
  82. .
  83. ^ Fedonkin, M.A. (1985). "Paleoichnology of Vendian Metazoa". In Sokolov, B.S.; Iwanowski, A.B. (eds.). Vendian System: Historical–Geological and Paleontological Foundation (in Russian). Vol. 1 Paleontology. Moscow, RU: Nauka. pp. 112–116.
  84. . Retrieved 8 March 2007.
  85. .
  86. .
  87. S2CID 39772232. Archived from the original
    on 15 September 2019. Retrieved 27 June 2007.
  88. .
  89. ^ Ivantsov, A. Y.; Malakhovskaya, Y. E. (2002). "Giant Traces of Vendian Animals" (PDF). Doklady Earth Sciences (in Russian). 385 (6): 618–622. Archived from the original (PDF) on 4 July 2007.
  90. ^ Ivantsov, A.Yu. (2008). Feeding traces of the Ediacaran animals. International Geological Congress. HPF-17 Trace fossils : Ichnological concepts and methods. Oslo. Archived from the original on 18 January 2020. Retrieved 7 July 2009.
  91. ^ According to
    Fedonkin, M.A.; Simonetta, A; Ivantsov, A.Y. (2007), "New data on Kimberella, the Vendian mollusc-like organism (White sea region, Russia): palaeoecological and evolutionary implications", in Vickers-Rich, Patricia; Komarower, Patricia (eds.), The Rise and Fall of the Ediacaran Biota, Special publications, vol. 286, London: Geological Society, pp. 157–179,
    OCLC 156823511
    For a more cynical perspective see
    Butterfield, N.J. (December 2006). "Hooking some stem-group "worms": Fossil lophotrochozoans in the Burgess Shale". BioEssays. 28 (12): 1161–1166.
    .
  92. .
  93. .
  94. .
  95. .
  96. ^ Williams, G.C. (1997). "Preliminary assessment of the phylogenetics of pennatulacean octocorals, with a reevaluation of Ediacaran frond-like fossils, and a synthesis of the history of evolutionary thought regarding the sea pens". Proceedings of the Sixth International Conference of Coelenterate Biology: 497–509.
  97. S2CID 130602154
    .
  98. .
  99. .
  100. .
  101. .
  102. .
  103. .
  104. .
  105. ^ .
  106. ^ .
  107. ^ .
  108. ^ . Retrieved 19 November 2013.
  109. S2CID 129180481. Archived from the original
    (PDF) on 25 February 2009. Retrieved 8 March 2007.
  110. ^ .
  111. .
  112. .
  113. .
  114. .
  115. .
  116. .
  117. ^ Zhuralev (1992). Were Vend-Ediacaran multicellulars metazoa?. 29th International Geological Congress. Vol. 2. Kyoto, Japan. p. 339.
  118. PMID 21680417
    .
  119. .
  120. ^ Gough, Myles (7 June 2016). "Origin of mystery deep-sea mushroom revealed". BBC News. Retrieved 7 June 2016.
  121. PMID 11539686
    . Retrieved 21 May 2007.
  122. .
  123. .
  124. .
  125. .
  126. .
  127. .
  128. .
  129. .
  130. .
  131. ^ Narbonne, Guy M. (September 2003). "Life after Snowball: The Mistaken Point biota and the origin of animal ecosystems". Geological Society of America Abstracts with Programs. Seattle Annual Meeting of the GSA. Vol. 35. p. 516. Archived from the original on 6 February 2012. Retrieved 22 June 2007.
  132. S2CID 206509488
    .
  133. .
  134. .
  135. ^ Dwarfed vendobionts from the Cambrian Kuanchuanpu Formation in South China.
  136. ^ Bottjer, D.J.; Hagadorn, J.W.; Dornbos, S.Q. (September 2000). "The Cambrian substrate revolution" (PDF). GSA Today. Vol. 10, no. 9. pp. 1–9. Retrieved 28 June 2008.
  137. .
  138. .
  139. .
  140. .
  141. .
  142. .
  143. .
  144. .
  145. .
  146. ^ .
  147. ^ .
  148. .
  149. .
  150. .
  151. .
  152. ^ Retallack G. J. (2012). Criteria for distinguishing microbial mats and earths (Report). Special Paper. Vol. 101. Tulsa: Society of Economic Paleontologists and Mineralogists. pp. 136–152.
  153. ^
    S2CID 129376371
    . (Source of data for Timeline synthesis, p. 218. Further citations available in caption to Fig. 8.)
  154. Queen's University, Canada
    .
  155. .
  156. .
  157. .
  158. .

Further reading

Listen to this article (35 minutes)
Spoken Wikipedia icon
Audio help · More spoken articles
)