Deep learning

Part of a series on |
Artificial intelligence (AI) |
---|
![]() |
In
Some common deep learning network architectures include
Early forms of neural networks were inspired by information processing and distributed communication nodes in biological systems, particularly the human brain. However, current neural networks do not intend to model the brain function of organisms, and are generally seen as low-quality models for that purpose.[6]
Overview
Most modern deep learning models are based on multi-layered
Fundamentally, deep learning refers to a class of
). The first representational layer may attempt to identify basic shapes such as lines and circles, the second layer may compose and encode arrangements of edges, the third layer may encode a nose and eyes, and the fourth layer may recognize that the image contains a face.Importantly, a deep learning process can learn which features to optimally place at which level on its own. Prior to deep learning, machine learning techniques often involved hand-crafted
The word "deep" in "deep learning" refers to the number of layers through which the data is transformed. More precisely, deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe potentially causal connections between input and output. For a feedforward neural network, the depth of the CAPs is that of the network and is the number of hidden layers plus one (as the output layer is also parameterized). For recurrent neural networks, in which a signal may propagate through a layer more than once, the CAP depth is potentially unlimited.[9] No universally agreed-upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep learning involves CAP depth higher than two. CAP of depth two has been shown to be a universal approximator in the sense that it can emulate any function.[10] Beyond that, more layers do not add to the function approximator ability of the network. Deep models (CAP > two) are able to extract better features than shallow models and hence, extra layers help in learning the features effectively.
Deep learning architectures can be constructed with a greedy layer-by-layer method.[11] Deep learning helps to disentangle these abstractions and pick out which features improve performance.[8]
Deep learning algorithms can be applied to unsupervised learning tasks. This is an important benefit because unlabeled data is more abundant than the labeled data. Examples of deep structures that can be trained in an unsupervised manner are deep belief networks.[8][12]
The term deep learning was introduced to the machine learning community by Rina Dechter in 1986,[13] and to artificial neural networks by Igor Aizenberg and colleagues in 2000, in the context of Boolean threshold neurons.[14][15] Although the history of its appearance is apparently more complicated.[16]
Interpretations
Deep neural networks are generally interpreted in terms of the universal approximation theorem[17][18][19][20][21] or probabilistic inference.[22][23][8][9][24]
The classic universal approximation theorem concerns the capacity of
The universal approximation theorem for
The
History
Before 1980
There are two
The first working deep learning algorithm was the Group method of data handling, a method to train arbitrarily deep neural networks, published by Alexey Ivakhnenko and Lapa in 1965. They regarded it as a form of polynomial regression,[39] or a generalization of Rosenblatt's perceptron.[40] A 1971 paper described a deep network with eight layers trained by this method,[41] which is based on layer by layer training through regression analysis. Superfluous hidden units are pruned using a separate validation set. Since the activation functions of the nodes are Kolmogorov-Gabor polynomials, these were also the first deep networks with multiplicative units or "gates".[31]
The first deep learning
In 1969, Kunihiko Fukushima introduced the ReLU (rectified linear unit) activation function.[25][31] The rectifier has become the most popular activation function for deep learning.[44]
Deep learning architectures for convolutional neural networks (CNNs) with convolutional layers and downsampling layers began with the Neocognitron introduced by Kunihiko Fukushima in 1979, though not trained by backpropagation.[45][46]
1980s-2000s
The time delay neural network (TDNN) was introduced in 1987 by Alex Waibel to apply CNN to phoneme recognition. It used convolutions, weight sharing, and backpropagation.[57][58] In 1988, Wei Zhang applied a backpropagation-trained CNN to alphabet recognition.[59] In 1989, Yann LeCun et al. created a CNN called LeNet for recognizing handwritten ZIP codes on mail. Training required 3 days.[60] In 1990, Wei Zhang implemented a CNN on optical computing hardware.[61] In 1991, a CNN was applied to medical image object segmentation[62] and breast cancer detection in mammograms.[63] LeNet-5 (1998), a 7-level CNN by Yann LeCun et al., that classifies digits, was applied by several banks to recognize hand-written numbers on checks digitized in 32x32 pixel images.[64]
Recurrent neural networks (RNN)[28][30] were further developed in the 1980s. Recurrence is used for sequence processing, and when a recurrent network is unrolled, it mathematically resembles a deep feedforward layer. Consequently, they have similar properties and issues, and their developments had mutual influences. In RNN, two early influential works were the Jordan network (1986)[65] and the Elman network (1990),[66] which applied RNN to study problems in cognitive psychology.
In the 1980s, backpropagation did not work well for deep learning with long credit assignment paths. To overcome this problem, in 1991,
Sepp Hochreiter's diploma thesis (1991)[70] implemented the neural history compressor,[67] and identified and analyzed the vanishing gradient problem.[70][71] Hochreiter proposed recurrent residual connections to solve the vanishing gradient problem. This led to the long short-term memory (LSTM), published in 1995.[72] LSTM can learn "very deep learning" tasks[9] with long credit assignment paths that require memories of events that happened thousands of discrete time steps before. That LSTM was not yet the modern architecture, which required a "forget gate", introduced in 1999,[73] which became the standard RNN architecture.
In 1991, Jürgen Schmidhuber also published adversarial neural networks that contest with each other in the form of a zero-sum game, where one network's gain is the other network's loss.[74][75] The first network is a generative model that models a probability distribution over output patterns. The second network learns by gradient descent to predict the reactions of the environment to these patterns. This was called "artificial curiosity". In 2014, this principle was used in generative adversarial networks (GANs).[76]
During 1985–1995, inspired by statistical mechanics, several architectures and methods were developed by Terry Sejnowski, Peter Dayan, Geoffrey Hinton, etc., including the Boltzmann machine,[77] restricted Boltzmann machine,[78] Helmholtz machine,[79] and the wake-sleep algorithm.[80] These were designed for unsupervised learning of deep generative models. However, those were more computationally expensive compared to backpropagation. Boltzmann machine learning algorithm, published in 1985, was briefly popular before being eclipsed by the backpropagation algorithm in 1986. (p. 112 [81]). A 1988 network became state of the art in protein structure prediction, an early application of deep learning to bioinformatics.[82]
Both shallow and deep learning (e.g., recurrent nets) of ANNs for speech recognition have been explored for many years.[83][84][85] These methods never outperformed non-uniform internal-handcrafting Gaussian mixture model/Hidden Markov model (GMM-HMM) technology based on generative models of speech trained discriminatively.[86] Key difficulties have been analyzed, including gradient diminishing[70] and weak temporal correlation structure in neural predictive models.[87][88] Additional difficulties were the lack of training data and limited computing power.
Most speech recognition researchers moved away from neural nets to pursue generative modeling. An exception was at SRI International in the late 1990s. Funded by the US government's NSA and DARPA, SRI researched in speech and speaker recognition. The speaker recognition team led by Larry Heck reported significant success with deep neural networks in speech processing in the 1998 NIST Speaker Recognition benchmark.[89][90] It was deployed in the Nuance Verifier, representing the first major industrial application of deep learning.[91]
The principle of elevating "raw" features over hand-crafted optimization was first explored successfully in the architecture of deep autoencoder on the "raw" spectrogram or linear filter-bank features in the late 1990s,[90] showing its superiority over the Mel-Cepstral features that contain stages of fixed transformation from spectrograms. The raw features of speech, waveforms, later produced excellent larger-scale results.[92]
2000s
Neural networks entered a lull, and simpler models that use task-specific handcrafted features such as Gabor filters and support vector machines (SVMs) became the preferred choices in the 1990s and 2000s, because of artificial neural networks' computational cost and a lack of understanding of how the brain wires its biological networks.[citation needed]
In 2003, LSTM became competitive with traditional speech recognizers on certain tasks.[93] In 2006, Alex Graves, Santiago Fernández, Faustino Gomez, and Schmidhuber combined it with connectionist temporal classification (CTC)[94] in stacks of LSTMs.[95] In 2009, it became the first RNN to win a pattern recognition contest, in connected handwriting recognition.[96][9]
In 2006, publications by
The impact of deep learning in industry began in the early 2000s, when CNNs already processed an estimated 10% to 20% of all the checks written in the US, according to Yann LeCun.[103] Industrial applications of deep learning to large-scale speech recognition started around 2010.
The 2009 NIPS Workshop on Deep Learning for Speech Recognition was motivated by the limitations of deep generative models of speech, and the possibility that given more capable hardware and large-scale data sets that deep neural nets might become practical. It was believed that pre-training DNNs using generative models of deep belief nets (DBN) would overcome the main difficulties of neural nets. However, it was discovered that replacing pre-training with large amounts of training data for straightforward backpropagation when using DNNs with large, context-dependent output layers produced error rates dramatically lower than then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov Model (HMM) and also than more-advanced generative model-based systems.[104] The nature of the recognition errors produced by the two types of systems was characteristically different,[105] offering technical insights into how to integrate deep learning into the existing highly efficient, run-time speech decoding system deployed by all major speech recognition systems.[23][106][107] Analysis around 2009–2010, contrasting the GMM (and other generative speech models) vs. DNN models, stimulated early industrial investment in deep learning for speech recognition.[105] That analysis was done with comparable performance (less than 1.5% in error rate) between discriminative DNNs and generative models.[104][105][108] In 2010, researchers extended deep learning from TIMIT to large vocabulary speech recognition, by adopting large output layers of the DNN based on context-dependent HMM states constructed by decision trees.[109][110][111][106]
Deep learning revolution

The deep learning revolution started around CNN- and GPU-based computer vision.
Although CNNs trained by backpropagation had been around for decades and GPU implementations of NNs for years,[112] including CNNs,[113] faster implementations of CNNs on GPUs were needed to progress on computer vision. Later, as deep learning becomes widespread, specialized hardware and algorithm optimizations were developed specifically for deep learning.[114]
A key advance for the deep learning revolution was hardware advances, especially GPU. Some early work dated back to 2004.
In 2011, a CNN named DanNet
In 2012,
In October 2012,
The success in image classification was then extended to the more challenging task of generating descriptions (captions) for images, often as a combination of CNNs and LSTMs.[123][124][125]
In 2014, the state of the art was training “very deep neural network” with 20 to 30 layers.[126] Stacking too many layers led to a steep reduction in training accuracy,[127] known as the "degradation" problem.[128] In 2015, two techniques were developed to train very deep networks: the Highway Network was published in May 2015, and the residual neural network (ResNet)[129] in Dec 2015. ResNet behaves like an open-gated Highway Net.
Around the same time, deep learning started impacting the field of art. Early examples included
Generative adversarial network (GAN) by (Ian Goodfellow et al., 2014)[131] (based on Jürgen Schmidhuber's principle of artificial curiosity[74][76]) became state of the art in generative modeling during 2014-2018 period. Excellent image quality is achieved by Nvidia's StyleGAN (2018)[132] based on the Progressive GAN by Tero Karras et al.[133] Here the GAN generator is grown from small to large scale in a pyramidal fashion. Image generation by GAN reached popular success, and provoked discussions concerning deepfakes.[134] Diffusion models (2015)[135] eclipsed GANs in generative modeling since then, with systems such as DALL·E 2 (2022) and Stable Diffusion (2022).
In 2015, Google's speech recognition improved by 49% by an LSTM-based model, which they made available through Google Voice Search on smartphone.[136][137]
Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision and
but are more successful in computer vision.Yoshua Bengio, Geoffrey Hinton and Yann LeCun were awarded the 2018 Turing Award for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing".[142]
Neural networks
Artificial neural networks (ANNs) or
An ANN is based on a collection of connected units called
Typically, neurons are organized in layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first (input), to the last (output) layer, possibly after traversing the layers multiple times.
The original goal of the neural network approach was to solve problems in the same way that a human brain would. Over time, attention focused on matching specific mental abilities, leading to deviations from biology such as backpropagation, or passing information in the reverse direction and adjusting the network to reflect that information.
Neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.
As of 2017, neural networks typically have a few thousand to a few million units and millions of connections. Despite this number being several order of magnitude less than the number of neurons on a human brain, these networks can perform many tasks at a level beyond that of humans (e.g., recognizing faces, or playing "Go"[144]).
Deep neural networks
A deep neural network (DNN) is an artificial neural network with multiple layers between the input and output layers.[7][9] There are different types of neural networks but they always consist of the same components: neurons, synapses, weights, biases, and functions.[145] These components as a whole function in a way that mimics functions of the human brain, and can be trained like any other ML algorithm.[citation needed]
For example, a DNN that is trained to recognize dog breeds will go over the given image and calculate the probability that the dog in the image is a certain breed. The user can review the results and select which probabilities the network should display (above a certain threshold, etc.) and return the proposed label. Each mathematical manipulation as such is considered a layer, [146] and complex DNN have many layers, hence the name "deep" networks.
DNNs can model complex non-linear relationships. DNN architectures generate compositional models where the object is expressed as a layered composition of
Deep architectures include many variants of a few basic approaches. Each architecture has found success in specific domains. It is not always possible to compare the performance of multiple architectures, unless they have been evaluated on the same data sets.[146]
DNNs are typically feedforward networks in which data flows from the input layer to the output layer without looping back. At first, the DNN creates a map of virtual neurons and assigns random numerical values, or "weights", to connections between them. The weights and inputs are multiplied and return an output between 0 and 1. If the network did not accurately recognize a particular pattern, an algorithm would adjust the weights.[149] That way the algorithm can make certain parameters more influential, until it determines the correct mathematical manipulation to fully process the data.
Convolutional neural networks (CNNs) are used in computer vision.[157] CNNs also have been applied to acoustic modeling for automatic speech recognition (ASR).[158]
Challenges
As with ANNs, many issues can arise with naively trained DNNs. Two common issues are overfitting and computation time.
DNNs are prone to overfitting because of the added layers of abstraction, which allow them to model rare dependencies in the training data.
DNNs must consider many training parameters, such as the size (number of layers and number of units per layer), the
Alternatively, engineers may look for other types of neural networks with more straightforward and convergent training algorithms. CMAC (cerebellar model articulation controller) is one such kind of neural network. It doesn't require learning rates or randomized initial weights. The training process can be guaranteed to converge in one step with a new batch of data, and the computational complexity of the training algorithm is linear with respect to the number of neurons involved.[166][167]
Hardware
Since the 2010s, advances in both machine learning algorithms and computer hardware have led to more efficient methods for training deep neural networks that contain many layers of non-linear hidden units and a very large output layer.[168] By 2019, graphics processing units (GPUs), often with AI-specific enhancements, had displaced CPUs as the dominant method for training large-scale commercial cloud AI .[169] OpenAI estimated the hardware computation used in the largest deep learning projects from AlexNet (2012) to AlphaZero (2017) and found a 300,000-fold increase in the amount of computation required, with a doubling-time trendline of 3.4 months.[170][171]
Special
Atomically thin
In 2021, J. Feldmann et al. proposed an integrated
Applications
Automatic speech recognition
Large-scale automatic speech recognition is the first and most convincing successful case of deep learning. LSTM RNNs can learn "Very Deep Learning" tasks[9] that involve multi-second intervals containing speech events separated by thousands of discrete time steps, where one time step corresponds to about 10 ms. LSTM with forget gates[156] is competitive with traditional speech recognizers on certain tasks.[93]
The initial success in speech recognition was based on small-scale recognition tasks based on TIMIT. The data set contains 630 speakers from eight major dialects of American English, where each speaker reads 10 sentences.[178] Its small size lets many configurations be tried. More importantly, the TIMIT task concerns phone-sequence recognition, which, unlike word-sequence recognition, allows weak phone bigram language models. This lets the strength of the acoustic modeling aspects of speech recognition be more easily analyzed. The error rates listed below, including these early results and measured as percent phone error rates (PER), have been summarized since 1991.
Method | Percent phone error rate (PER) (%) |
---|---|
Randomly Initialized RNN[179] | 26.1 |
Bayesian Triphone GMM-HMM | 25.6 |
Hidden Trajectory (Generative) Model | 24.8 |
Monophone Randomly Initialized DNN | 23.4 |
Monophone DBN-DNN | 22.4 |
Triphone GMM-HMM with BMMI Training | 21.7 |
Monophone DBN-DNN on fbank | 20.7 |
Convolutional DNN[180] | 20.0 |
Convolutional DNN w. Heterogeneous Pooling | 18.7 |
Ensemble DNN/CNN/RNN[181] | 18.3 |
Bidirectional LSTM | 17.8 |
Hierarchical Convolutional Deep Maxout Network[182] | 16.5 |
The debut of DNNs for speaker recognition in the late 1990s and speech recognition around 2009-2011 and of LSTM around 2003–2007, accelerated progress in eight major areas:[23][108][106]
- Scale-up/out and accelerated DNN training and decoding
- Sequence discriminative training
- Feature processing by deep models with solid understanding of the underlying mechanisms
- Adaptation of DNNs and related deep models
- Multi-task and transfer learning by DNNs and related deep models
- CNNs and how to design them to best exploit domain knowledge of speech
- RNN and its rich LSTM variants
- Other types of deep models including tensor-based models and integrated deep generative/discriminative models.
All major commercial speech recognition systems (e.g., Microsoft
Image recognition
A common evaluation set for image classification is the MNIST database data set. MNIST is composed of handwritten digits and includes 60,000 training examples and 10,000 test examples. As with TIMIT, its small size lets users test multiple configurations. A comprehensive list of results on this set is available.[185]
Deep learning-based image recognition has become "superhuman", producing more accurate results than human contestants. This first occurred in 2011 in recognition of traffic signs, and in 2014, with recognition of human faces.[186][187]
Deep learning-trained vehicles now interpret 360° camera views.[188] Another example is Facial Dysmorphology Novel Analysis (FDNA) used to analyze cases of human malformation connected to a large database of genetic syndromes.
Visual art processing

Closely related to the progress that has been made in image recognition is the increasing application of deep learning techniques to various visual art tasks. DNNs have proven themselves capable, for example, of
- identifying the style period of a given painting[189][190]
- generating striking imagery based on random visual input fields.[189][190]
Natural language processing
Neural networks have been used for implementing language models since the early 2000s.[150] LSTM helped to improve machine translation and language modeling.[151][152][153]
Other key techniques in this field are negative sampling
Recent developments generalize word embedding to sentence embedding.
Google Translate (GT) uses a large end-to-end long short-term memory (LSTM) network.[202][203][204][205] Google Neural Machine Translation (GNMT) uses an example-based machine translation method in which the system "learns from millions of examples".[203] It translates "whole sentences at a time, rather than pieces". Google Translate supports over one hundred languages.[203] The network encodes the "semantics of the sentence rather than simply memorizing phrase-to-phrase translations".[203][206] GT uses English as an intermediate between most language pairs.[206]
Drug discovery and toxicology
A large percentage of candidate drugs fail to win regulatory approval. These failures are caused by insufficient efficacy (on-target effect), undesired interactions (off-target effects), or unanticipated
AtomNet is a deep learning system for structure-based
In 2017 graph neural networks were used for the first time to predict various properties of molecules in a large toxicology data set.[217] In 2019, generative neural networks were used to produce molecules that were validated experimentally all the way into mice.[218][219]
Customer relationship management
Recommendation systems
Recommendation systems have used deep learning to extract meaningful features for a latent factor model for content-based music and journal recommendations.[221][222] Multi-view deep learning has been applied for learning user preferences from multiple domains.[223] The model uses a hybrid collaborative and content-based approach and enhances recommendations in multiple tasks.
Bioinformatics
An autoencoder ANN was used in bioinformatics, to predict gene ontology annotations and gene-function relationships.[224]
In medical informatics, deep learning was used to predict sleep quality based on data from wearables[225] and predictions of health complications from electronic health record data.[226]
Deep neural networks have shown unparalleled performance in predicting protein structure, according to the sequence of the amino acids that make it up. In 2020, AlphaFold, a deep-learning based system, achieved a level of accuracy significantly higher than all previous computational methods.[227][228]
Deep Neural Network Estimations
Deep neural networks can be used to estimate the entropy of a
Medical image analysis
Deep learning has been shown to produce competitive results in medical application such as cancer cell classification, lesion detection, organ segmentation and image enhancement.[230][231] Modern deep learning tools demonstrate the high accuracy of detecting various diseases and the helpfulness of their use by specialists to improve the diagnosis efficiency.[232][233]
Mobile advertising
Finding the appropriate mobile audience for mobile advertising is always challenging, since many data points must be considered and analyzed before a target segment can be created and used in ad serving by any ad server.[234] Deep learning has been used to interpret large, many-dimensioned advertising datasets. Many data points are collected during the request/serve/click internet advertising cycle. This information can form the basis of machine learning to improve ad selection.
Image restoration
Deep learning has been successfully applied to
Financial fraud detection
Deep learning is being successfully applied to financial
Materials science
In November 2023, researchers at Google DeepMind and Lawrence Berkeley National Laboratory announced that they had developed an AI system known as GNoME. This system has contributed to materials science by discovering over 2 million new materials within a relatively short timeframe. GNoME employs deep learning techniques to efficiently explore potential material structures, achieving a significant increase in the identification of stable inorganic crystal structures. The system's predictions were validated through autonomous robotic experiments, demonstrating a noteworthy success rate of 71%. The data of newly discovered materials is publicly available through the Materials Project database, offering researchers the opportunity to identify materials with desired properties for various applications. This development has implications for the future of scientific discovery and the integration of AI in material science research, potentially expediting material innovation and reducing costs in product development. The use of AI and deep learning suggests the possibility of minimizing or eliminating manual lab experiments and allowing scientists to focus more on the design and analysis of unique compounds.[239][240][241]
Military
The United States Department of Defense applied deep learning to train robots in new tasks through observation.[242]
Partial differential equations
Physics informed neural networks have been used to solve partial differential equations in both forward and inverse problems in a data driven manner.[243] One example is the reconstructing fluid flow governed by the Navier-Stokes equations. Using physics informed neural networks does not require the often expensive mesh generation that conventional CFD methods rely on.[244][245]
Deep backward stochastic differential equation method
In addition, the integration of Physics-informed neural networks (PINNs) into the deep BSDE framework enhances its capability by embedding the underlying physical laws directly into the neural network architecture. This ensures that the solutions not only fit the data but also adhere to the governing stochastic differential equations. PINNs leverage the power of deep learning while respecting the constraints imposed by the physical models, resulting in more accurate and reliable solutions for financial mathematics problems.
Image reconstruction
Image reconstruction is the reconstruction of the underlying images from the image-related measurements. Several works showed the better and superior performance of the deep learning methods compared to analytical methods for various applications, e.g., spectral imaging [247] and ultrasound imaging.[248]
Weather prediction
Traditional weather prediction systems solve a very complex system of partial differential equations. GraphCast is a deep learning based model, trained on a long history of weather data to predict how weather patterns change over time. It is able to predict weather conditions for up to 10 days globally, at a very detailed level, and in under a minute, with precision similar to state of the art systems.[249][250]
Epigenetic clock
An epigenetic clock is a biochemical test that can be used to measure age. Galkin et al. used deep neural networks to train an epigenetic aging clock of unprecedented accuracy using >6,000 blood samples.[251] The clock uses information from 1000 CpG sites and predicts people with certain conditions older than healthy controls: IBD, frontotemporal dementia, ovarian cancer, obesity. The aging clock was planned to be released for public use in 2021 by an Insilico Medicine spinoff company Deep Longevity.
Relation to human cognitive and brain development
Deep learning is closely related to a class of theories of
A variety of approaches have been used to investigate the plausibility of deep learning models from a neurobiological perspective. On the one hand, several variants of the backpropagation algorithm have been proposed in order to increase its processing realism.[257][258] Other researchers have argued that unsupervised forms of deep learning, such as those based on hierarchical generative models and deep belief networks, may be closer to biological reality.[259][260] In this respect, generative neural network models have been related to neurobiological evidence about sampling-based processing in the cerebral cortex.[261]
Although a systematic comparison between the human brain organization and the neuronal encoding in deep networks has not yet been established, several analogies have been reported. For example, the computations performed by deep learning units could be similar to those of actual neurons[262] and neural populations.[263] Similarly, the representations developed by deep learning models are similar to those measured in the primate visual system[264] both at the single-unit[265] and at the population[266] levels.
Commercial activity
Facebook's AI lab performs tasks such as automatically tagging uploaded pictures with the names of the people in them.[267]
Google's
In 2017, Covariant.ai was launched, which focuses on integrating deep learning into factories.[271]
As of 2008,
Criticism and comment
Deep learning has attracted both criticism and comment, in some cases from outside the field of computer science.
Theory
A main criticism concerns the lack of theory surrounding some methods.[274] Learning in the most common deep architectures is implemented using well-understood gradient descent. However, the theory surrounding other algorithms, such as contrastive divergence is less clear.[citation needed] (e.g., Does it converge? If so, how fast? What is it approximating?) Deep learning methods are often looked at as a black box, with most confirmations done empirically, rather than theoretically.[275]
In further reference to the idea that artistic sensitivity might be inherent in relatively low levels of the cognitive hierarchy, a published series of graphic representations of the internal states of deep (20-30 layers) neural networks attempting to discern within essentially random data the images on which they were trained[276] demonstrate a visual appeal: the original research notice received well over 1,000 comments, and was the subject of what was for a time the most frequently accessed article on The Guardian's[277] website.
Furthermore, some researchers have argued that standard loss functions and differentiable architectures in deep learning may limit the discovery of deeper causal or generative mechanisms.[278] Building on Algorithmic information theory (AIT), Hernández-Orozco et al. (2021)[279] proposed an algorithmic loss function to measure the discrepancy between predicted and observed system behavior. Their approach integrates AIT with Machine learning to formulate a framework for learning generative rules in non-differentiable spaces, bridging discrete algorithmic theory with continuous optimization techniques. This framework provides a new perspective on generalization and model interpretability by grounding learning dynamics in algorithmic complexity. [280] [281]
Errors
Some deep learning architectures display problematic behaviors,[282] such as confidently classifying unrecognizable images as belonging to a familiar category of ordinary images (2014)[283] and misclassifying minuscule perturbations of correctly classified images (2013).[284] Goertzel hypothesized that these behaviors are due to limitations in their internal representations and that these limitations would inhibit integration into heterogeneous multi-component artificial general intelligence (AGI) architectures.[282] These issues may possibly be addressed by deep learning architectures that internally form states homologous to image-grammar[285] decompositions of observed entities and events.[282] Learning a grammar (visual or linguistic) from training data would be equivalent to restricting the system to commonsense reasoning that operates on concepts in terms of grammatical production rules and is a basic goal of both human language acquisition[286] and artificial intelligence (AI).[287]
Cyber threat
As deep learning moves from the lab into the world, research and experience show that artificial neural networks are vulnerable to hacks and deception.[288] By identifying patterns that these systems use to function, attackers can modify inputs to ANNs in such a way that the ANN finds a match that human observers would not recognize. For example, an attacker can make subtle changes to an image such that the ANN finds a match even though the image looks to a human nothing like the search target. Such manipulation is termed an "adversarial attack".[289]
In 2016 researchers used one ANN to doctor images in trial and error fashion, identify another's focal points, and thereby generate images that deceived it. The modified images looked no different to human eyes. Another group showed that printouts of doctored images then photographed successfully tricked an image classification system.[290] One defense is reverse image search, in which a possible fake image is submitted to a site such as TinEye that can then find other instances of it. A refinement is to search using only parts of the image, to identify images from which that piece may have been taken.[291]
Another group showed that certain psychedelic spectacles could fool a facial recognition system into thinking ordinary people were celebrities, potentially allowing one person to impersonate another. In 2017 researchers added stickers to stop signs and caused an ANN to misclassify them.[290]
ANNs can however be further trained to detect attempts at deception, potentially leading attackers and defenders into an arms race similar to the kind that already defines the malware defense industry. ANNs have been trained to defeat ANN-based anti-malware software by repeatedly attacking a defense with malware that was continually altered by a genetic algorithm until it tricked the anti-malware while retaining its ability to damage the target.[290]
In 2016, another group demonstrated that certain sounds could make the Google Now voice command system open a particular web address, and hypothesized that this could "serve as a stepping stone for further attacks (e.g., opening a web page hosting drive-by malware)".[290]
In "data poisoning", false data is continually smuggled into a machine learning system's training set to prevent it from achieving mastery.[290]
Data collection ethics
The deep learning systems that are trained using supervised learning often rely on data that is created or annotated by humans, or both.
See also
- Applications of artificial intelligence
- Comparison of deep learning software
- Compressed sensing
- Differentiable programming
- Echo state network
- List of artificial intelligence projects
- Liquid state machine
- List of datasets for machine-learning research
- Reservoir computing
- Scale space and deep learning
- Sparse coding
- Stochastic parrot
- Topological deep learning
References
- S2CID 220523562.
- ^ S2CID 3074096.
- ^ S2CID 2161592.
- ^ a b Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey (2012). "ImageNet Classification with Deep Convolutional Neural Networks" (PDF). NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada. Archived (PDF) from the original on 2017-01-10. Retrieved 2017-05-24.
- ^ "Google's AlphaGo AI wins three-match series against the world's best Go player". TechCrunch. 25 May 2017. Archived from the original on 17 June 2018. Retrieved 17 June 2018.
- ^ "Study urges caution when comparing neural networks to the brain". MIT News | Massachusetts Institute of Technology. 2022-11-02. Retrieved 2023-12-06.
- ^ S2CID 207178999. Archived from the original(PDF) on 4 March 2016. Retrieved 3 September 2015.
- ^ S2CID 393948.
- ^ S2CID 11715509.
- ISBN 978-1-5225-8218-2.
- ^ Bengio, Yoshua; Lamblin, Pascal; Popovici, Dan; Larochelle, Hugo (2007). Greedy layer-wise training of deep networks (PDF). Advances in neural information processing systems. pp. 153–160. Archived (PDF) from the original on 2019-10-20. Retrieved 2019-10-06.
- ^ .
- ^ Rina Dechter (1986). Learning while searching in constraint-satisfaction problems. University of California, Computer Science Department, Cognitive Systems Laboratory.Online Archived 2016-04-19 at the Wayback Machine
- ISBN 978-0-7923-7824-2. Retrieved 27 December 2023.
- ^ Co-evolving recurrent neurons learn deep memory POMDPs. Proc. GECCO, Washington, D. C., pp. 1795–1802, ACM Press, New York, NY, USA, 2005.
- S2CID 235081987.
- ^ S2CID 3958369. Archived from the original(PDF) on 10 October 2015.
- ^ S2CID 7343126.
- ^ ISBN 978-0-13-273350-2.
- ^ ISBN 978-0-262-08239-6.
- ^ a b Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The Expressive Power of Neural Networks: A View from the Width Archived 2019-02-13 at the Wayback Machine. Neural Information Processing Systems, 6231-6239.
- PMID 28743932.
- ^ (PDF) from the original on 2016-03-14. Retrieved 2014-10-18.
- ^ ISBN 978-0-262-01802-9.
- ^ .
- S2CID 12149203.
- ISBN 978-0-387-31073-2. Archived(PDF) from the original on 2017-01-11. Retrieved 2017-08-06.
- ^ a b "bibliotheca Augustana". www.hs-augsburg.de.
- .
- ^ a b Amari, Shun-Ichi (1972). "Learning patterns and pattern sequences by self-organizing nets of threshold elements". IEEE Transactions. C (21): 1197–1206.
- ^ arXiv:2212.11279 [cs.NE].
- PMID 6953413.
- ISBN 978-1-4615-7568-9.
- .
- ISBN 0-444-88058-5.
- PMID 13602029.
- ^ a b Rosenblatt, Frank (1962). Principles of Neurodynamics. Spartan, New York.
- ^ Joseph, R. D. (1960). Contributions to Perceptron Theory, Cornell Aeronautical Laboratory Report No. VG-11 96--G-7, Buffalo.
- ISBN 978-0-444-00020-0.
- .
- ^ (PDF) from the original on 2017-08-29. Retrieved 2019-11-05.
- .
- ^ Amari, Shun'ichi (1967). "A theory of adaptive pattern classifier". IEEE Transactions. EC (16): 279–307.
- arXiv:1710.05941 [cs.NE].
- S2CID 206775608.
- S2CID 206775608.
- )
- doi:10.2514/8.5282.
- ^ Linnainmaa, Seppo (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Masters) (in Finnish). University of Helsinki. p. 6–7.
- S2CID 122357351.
- ^ Ostrovski, G.M., Volin,Y.M., and Boris, W.W. (1971). On the computation of derivatives. Wiss. Z. Tech. Hochschule for Chemistry, 13:382–384.
- ^ Schmidhuber, Juergen (25 Oct 2014). "Who Invented Backpropagation?". IDSIA, Switzerland. Archived from the originalon 30 July 2024. Retrieved 14 Sep 2024.
- ^ Werbos, Paul (1982). "Applications of advances in nonlinear sensitivity analysis" (PDF). System modeling and optimization. Springer. pp. 762–770. Archived (PDF) from the original on 14 April 2016. Retrieved 2 July 2017.
- ISBN 0-471-59897-6.
- ISSN 1476-4687.
- ^ Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. "Learning Internal Representations by Error Propagation Archived 2022-10-13 at the Wayback Machine". David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986.
- ^ Waibel, Alex (December 1987). Phoneme Recognition Using Time-Delay Neural Networks (PDF). Meeting of the Institute of Electrical, Information and Communication Engineers (IEICE). Tokyo, Japan.
- ^ Alexander Waibel et al., Phoneme Recognition Using Time-Delay Neural Networks IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume 37, No. 3, pp. 328. – 339 March 1989.
- ^ Zhang, Wei (1988). "Shift-invariant pattern recognition neural network and its optical architecture". Proceedings of Annual Conference of the Japan Society of Applied Physics.
- ^ LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition", Neural Computation, 1, pp. 541–551, 1989.
- PMID 20577468.
- PMID 20706526.
- PMID 8058017.
- S2CID 14542261. Retrieved October 7, 2016.
- ^ Jordan, Michael I. (1986). "Attractor dynamics and parallelism in a connectionist sequential machine". Proceedings of the Annual Meeting of the Cognitive Science Society. 8.
- ISSN 0364-0213.
- ^ a b c Schmidhuber, Jürgen (April 1991). "Neural Sequence Chunkers" (PDF). TR FKI-148, TU Munich.
- ^ S2CID 18271205.
- ^ Schmidhuber, Jürgen (1993). Habilitation thesis: System modeling and optimization (PDF). Archived from the original (PDF) on May 16, 2022. Page 150 ff demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN.
- ^ a b c S. Hochreiter., "Untersuchungen zu dynamischen neuronalen Netzen". Archived 2015-03-06 at the Wayback Machine. Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber, 1991.
- ISBN 978-0-7803-5369-5.
- Wikidata Q98967430
- ISBN 0-85296-721-7.
- ^ a b Schmidhuber, Jürgen (1991). "A possibility for implementing curiosity and boredom in model-building neural controllers". Proc. SAB'1991. MIT Press/Bradford Books. pp. 222–227.
- S2CID 234198.
- ^ S2CID 216056336.
- ISSN 0364-0213.
- ISBN 0-262-68053-X.
- S2CID 1890561.
- S2CID 871473.
- ISBN 978-0-262-03803-4.
- PMID 3172241.
- ISSN 0218-0014.
- ISBN 9780780305328. Archivedfrom the original on 2021-05-09. Retrieved 2017-06-12.
- (PDF) from the original on 2021-04-27. Retrieved 2019-09-24.
- S2CID 357467.
- ^ Bengio, Y. (1991). "Artificial Neural Networks and their Application to Speech/Sequence Recognition". McGill University Ph.D. thesis. Archived from the original on 2021-05-09. Retrieved 2017-06-12.
- .
- .
- ^ .
- ^ L.P Heck and R. Teunen. "Secure and Convenient Transactions with Nuance Verifier". Nuance Users Conference, April 1998.
- ^ "Acoustic Modeling with Deep Neural Networks Using Raw Time Signal for LVCSR (PDF Download Available)". ResearchGate. Archived from the original on 9 May 2021. Retrieved 14 June 2017.
- ^ a b Graves, Alex; Eck, Douglas; Beringer, Nicole; Schmidhuber, Jürgen (2003). "Biologically Plausible Speech Recognition with LSTM Neural Nets" (PDF). 1st Intl. Workshop on Biologically Inspired Approaches to Advanced Information Technology, Bio-ADIT 2004, Lausanne, Switzerland. pp. 175–184. Archived from the original (PDF) on 2017-07-06. Retrieved 2016-04-09.
- CiteSeerX 10.1.1.75.6306.
- ^ Santiago Fernandez, Alex Graves, and Jürgen Schmidhuber (2007). An application of recurrent neural networks to discriminative keyword spotting Archived 2018-11-18 at the Wayback Machine. Proceedings of ICANN (2), pp. 220–229.
- ^ Graves, Alex; and Schmidhuber, Jürgen; Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), Advances in Neural Information Processing Systems 22 (NIPS'22), December 7th–10th, 2009, Vancouver, BC, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552
- from the original on 11 October 2013. Retrieved 12 June 2017.
- (PDF) from the original on 2015-12-23. Retrieved 2011-07-20.
- ^ G. E. Hinton., "Learning multiple layers of representation". Archived 2018-05-22 at the Wayback Machine. Trends in Cognitive Sciences, 11, pp. 428–434, 2007.
- PMID 17921042.
- PMID 16764513.
- ISSN 1941-6016.
- ^ Yann LeCun (2016). Slides on Deep Learning Online Archived 2016-04-23 at the Wayback Machine
- ^ S2CID 206485943.
- ^ a b c Deng, L.; Hinton, G.; Kingsbury, B. (May 2013). "New types of deep neural network learning for speech recognition and related applications: An overview (ICASSP)" (PDF). Microsoft. Archived (PDF) from the original on 2017-09-26. Retrieved 27 December 2023.
- ^ ISBN 978-1-4471-5779-3.
- ^ "Deng receives prestigious IEEE Technical Achievement Award - Microsoft Research". Microsoft Research. 3 December 2015. Archived from the original on 16 March 2018. Retrieved 16 March 2018.
- ^ a b Li, Deng (September 2014). "Keynote talk: 'Achievements and Challenges of Deep Learning - From Speech Analysis and Recognition To Language and Multimodal Processing'". Interspeech. Archived from the original on 2017-09-26. Retrieved 2017-06-12.
- ^ Yu, D.; Deng, L. (2010). "Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition". NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Archived from the original on 2017-10-12. Retrieved 2017-06-14.
- from the original on 2017-10-12. Retrieved 2017-06-14.
- ^ Deng, Li; Li, Jinyu; Huang, Jui-Ting; Yao, Kaisheng; Yu, Dong; Seide, Frank; Seltzer, Mike; Zweig, Geoff; He, Xiaodong (1 May 2013). "Recent Advances in Deep Learning for Speech Research at Microsoft". Microsoft Research. Archived from the original on 12 October 2017. Retrieved 14 June 2017.
- ^ .
- ^ a b Chellapilla, Kumar; Puri, Sidd; Simard, Patrice (2006), High performance convolutional neural networks for document processing, archived from the original on 2020-05-18, retrieved 2021-02-14
- arXiv:1703.09039 [cs.CV].
- ISBN 978-1-60558-516-1.
- S2CID 1918673.
- (PDF) from the original on 2014-09-29. Retrieved 2017-06-13.
- ^ Ciresan, Dan; Giusti, Alessandro; Gambardella, Luca M.; Schmidhuber, Jürgen (2012). Pereira, F.; Burges, C. J. C.; Bottou, L.; Weinberger, K. Q. (eds.). Advances in Neural Information Processing Systems 25 (PDF). Curran Associates, Inc. pp. 2843–2851. Archived (PDF) from the original on 2017-08-09. Retrieved 2017-06-13.
- PMID 24579167.
- ].
- ].
- arXiv:1409.4842.
- ]..
- ]..
- ]..
- arXiv:1409.1556
- arXiv:1502.01852 [cs.CV].
- arXiv:1512.03385.
- ISBN 978-1-4673-8851-1.
- arXiv:1508.06576 [cs.CV].
- ^ Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). Generative Adversarial Networks (PDF). Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680. Archived (PDF) from the original on 22 November 2019. Retrieved 20 August 2019.
- ^ "GAN 2.0: NVIDIA's Hyperrealistic Face Generator". SyncedReview.com. December 14, 2018. Retrieved October 3, 2019.
- arXiv:1710.10196 [cs.NE].
- ^ "Prepare, Don't Panic: Synthetic Media and Deepfakes". witness.org. Archived from the original on 2 December 2020. Retrieved 25 November 2020.
- arXiv:1503.03585.
- ^ Google Research Blog. The neural networks behind Google Voice transcription. August 11, 2015. By Françoise Beaufays http://googleresearch.blogspot.co.at/2015/08/the-neural-networks-behind-google-voice.html
- ^ a b Sak, Haşim; Senior, Andrew; Rao, Kanishka; Beaufays, Françoise; Schalkwyk, Johan (September 2015). "Google voice search: faster and more accurate". Archived from the original on 2016-03-09. Retrieved 2016-04-09.
- S2CID 231846518.
- ^ Sak, Hasim; Senior, Andrew; Beaufays, Francoise (2014). "Long Short-Term Memory recurrent neural network architectures for large scale acoustic modeling" (PDF). Archived from the original (PDF) on 24 April 2018.
- ].
- ^ Zen, Heiga; Sak, Hasim (2015). "Unidirectional Long Short-Term Memory Recurrent Neural Network with Recurrent Output Layer for Low-Latency Speech Synthesis" (PDF). Google.com. ICASSP. pp. 4470–4474. Archived (PDF) from the original on 2021-05-09. Retrieved 2017-06-13.
- ^ "2018 ACM A.M. Turing Award Laureates". awards.acm.org. Retrieved 2024-08-07.
- ISBN 978-1492671206.)
{{cite book}}
: CS1 maint: multiple names: authors list (link - S2CID 515925.
- ^ A Guide to Deep Learning and Neural Networks, archived from the original on 2020-11-02, retrieved 2020-11-16
- ^ S2CID 240420107.
- ^ Szegedy, Christian; Toshev, Alexander; Erhan, Dumitru (2013). "Deep neural networks for object detection". Advances in Neural Information Processing Systems: 2553–2561. Archived from the original on 2017-06-29. Retrieved 2017-06-13.
- ^ Rolnick, David; Tegmark, Max (2018). "The power of deeper networks for expressing natural functions". International Conference on Learning Representations. ICLR 2018. Archived from the original on 2021-01-07. Retrieved 2021-01-05.
- ^ Hof, Robert D. "Is Artificial Intelligence Finally Coming into Its Own?". MIT Technology Review. Archived from the original on 31 March 2019. Retrieved 10 July 2018.
- ^ from the original on 2020-01-26. Retrieved 2020-02-25.
- ^ Bibcode:2014arXiv1409.3215S. Archived(PDF) from the original on 2021-05-09. Retrieved 2017-06-13.
- ^ arXiv:1602.02410 [cs.CL].
- ^ arXiv:1512.00103 [cs.CL].
- (PDF) from the original on 2017-05-16. Retrieved 2017-06-13.
- S2CID 1915014.
- ^ a b "Learning Precise Timing with LSTM Recurrent Networks (PDF Download Available)". ResearchGate. Archived from the original on 9 May 2021. Retrieved 13 June 2017.
- S2CID 14542261.
- S2CID 13816461.
- S2CID 12485056.
- ^ Dahl, G.; et al. (2013). "Improving DNNs for LVCSR using rectified linear units and dropout" (PDF). ICASSP. Archived (PDF) from the original on 2017-08-12. Retrieved 2017-06-13.
- .
- ^ "Data Augmentation - deeplearning.ai | Coursera". Coursera. Archived from the original on 1 December 2017. Retrieved 30 November 2017.
- ^ Hinton, G. E. (2010). "A Practical Guide to Training Restricted Boltzmann Machines". Tech. Rep. UTML TR 2010-003. Archived from the original on 2021-05-09. Retrieved 2017-06-13.
- from the original on 29 July 2020. Retrieved 5 March 2018.
- S2CID 14135321.
- ^ Ting Qin, et al. "A learning algorithm of CMAC based on RLS". Neural Processing Letters 19.1 (2004): 49-61.
- ^ Ting Qin, et al. "Continuous CMAC-QRLS and its systolic array". Archived 2018-11-18 at the Wayback Machine. Neural Processing Letters 22.1 (2005): 1-16.
- ^ Research, AI (23 October 2015). "Deep Neural Networks for Acoustic Modeling in Speech Recognition". airesearch.com. Archived from the original on 1 February 2016. Retrieved 23 October 2015.
- ^ "GPUs Continue to Dominate the AI Accelerator Market for Now". InformationWeek. December 2019. Archived from the original on 10 June 2020. Retrieved 11 June 2020.
- ^ Ray, Tiernan (2019). "AI is changing the entire nature of computation". ZDNet. Archived from the original on 25 May 2020. Retrieved 11 June 2020.
- ^ "AI and Compute". OpenAI. 16 May 2018. Archived from the original on 17 June 2020. Retrieved 11 June 2020.
- ^ "HUAWEI Reveals the Future of Mobile AI at IFA 2017 | HUAWEI Latest News | HUAWEI Global". consumer.huawei.com.
- .
- ^ Woodie, Alex (2021-11-01). "Cerebras Hits the Accelerator for Deep Learning Workloads". Datanami. Retrieved 2022-08-03.
- ^ "Cerebras launches new AI supercomputing processor with 2.6 trillion transistors". VentureBeat. 2021-04-20. Retrieved 2022-08-03.
- PMID 33149289.
- ^ S2CID 211010976.
- ISBN 1-58563-019-5. Retrieved 27 December 2023.
- .
- from the original on 2020-09-22. Retrieved 2018-04-20.
- S2CID 15641618.
- (PDF) from the original on 2020-09-24. Retrieved 2019-04-01.
- ^ McMillan, Robert (17 December 2014). "How Skype Used AI to Build Its Amazing New Language Translator | WIRED". Wired. Archived from the original on 8 June 2017. Retrieved 14 June 2017.
- ].
- ^ "MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges". yann.lecun.com. Archived from the original on 2014-01-13. Retrieved 2014-01-28.
- PMID 22386783.
- ].
- ^ Nvidia Demos a Car Computer Trained with "Deep Learning" (6 January 2015), David Talbot, MIT Technology Review
- ^ .
- ^ .
- ].
- ^ a b Socher, Richard; Manning, Christopher. "Deep Learning for NLP" (PDF). Archived (PDF) from the original on 6 July 2014. Retrieved 26 October 2014.
- ^ Socher, Richard; Bauer, John; Manning, Christopher; Ng, Andrew (2013). "Parsing With Compositional Vector Grammars" (PDF). Proceedings of the ACL 2013 Conference. Archived (PDF) from the original on 2014-11-27. Retrieved 2014-09-03.
- (PDF) from the original on 28 December 2016. Retrieved 21 December 2023.
- ^ Shen, Yelong; He, Xiaodong; Gao, Jianfeng; Deng, Li; Mesnil, Gregoire (1 November 2014). "A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval". Microsoft Research. Archived from the original on 27 October 2017. Retrieved 14 June 2017.
- ^ Huang, Po-Sen; He, Xiaodong; Gao, Jianfeng; Deng, Li; Acero, Alex; Heck, Larry (1 October 2013). "Learning Deep Structured Semantic Models for Web Search using Clickthrough Data". Microsoft Research. Archived from the original on 27 October 2017. Retrieved 14 June 2017.
- S2CID 1317136.
- ^ a b Gao, Jianfeng; He, Xiaodong; Yih, Scott Wen-tau; Deng, Li (1 June 2014). "Learning Continuous Phrase Representations for Translation Modeling". Microsoft Research. Archived from the original on 27 October 2017. Retrieved 14 June 2017.
- S2CID 40745740.
- PMID 36855134.
- ^ "Deep Learning for Natural Language Processing: Theory and Practice (CIKM2014 Tutorial) - Microsoft Research". Microsoft Research. Archived from the original on 13 March 2017. Retrieved 14 June 2017.
- ^ Turovsky, Barak (15 November 2016). "Found in translation: More accurate, fluent sentences in Google Translate". The Keyword Google Blog. Archived from the original on 7 April 2017. Retrieved 23 March 2017.
- ^ a b c d Schuster, Mike; Johnson, Melvin; Thorat, Nikhil (22 November 2016). "Zero-Shot Translation with Google's Multilingual Neural Machine Translation System". Google Research Blog. Archived from the original on 10 July 2017. Retrieved 23 March 2017.
- arXiv:1609.08144 [cs.CL].
- ^ Metz, Cade (27 September 2016). "An Infusion of AI Makes Google Translate More Powerful Than Ever". Wired. Archived from the original on 8 November 2020. Retrieved 12 October 2017.
- ^ a b Boitet, Christian; Blanchon, Hervé; Seligman, Mark; Bellynck, Valérie (2010). "MT on and for the Web" (PDF). Archived from the original (PDF) on 29 March 2017. Retrieved 1 December 2016.
- S2CID 20246434.
- PMID 25582842.
- ^ "Merck Molecular Activity Challenge". kaggle.com. Archived from the original on 2020-07-16. Retrieved 2020-07-16.
- ^ "Multi-task Neural Networks for QSAR Predictions | Data Science Association". www.datascienceassn.org. Archived from the original on 30 April 2017. Retrieved 14 June 2017.
- ^ "Toxicology in the 21st century Data Challenge"
- ^ "NCATS Announces Tox21 Data Challenge Winners". Archived from the original on 2015-09-08. Retrieved 2015-03-05.
- ^ "NCATS Announces Tox21 Data Challenge Winners". Archived from the original on 28 February 2015. Retrieved 5 March 2015.
- arXiv:1510.02855 [cs.LG].
- ^ a b "Toronto startup has a faster way to discover effective medicines". The Globe and Mail. Archived from the original on 20 October 2015. Retrieved 9 November 2015.
- ^ "Startup Harnesses Supercomputers to Seek Cures". KQED Future of You. 27 May 2015. Archived from the original on 24 December 2015. Retrieved 9 November 2015.
- arXiv:1704.01212 [cs.LG].
- S2CID 201716327.
- ^ Gregory, Barber. "A Molecule Designed By AI Exhibits 'Druglike' Qualities". Wired. Archived from the original on 2020-04-30. Retrieved 2019-09-05.
- arXiv:1504.01840 [cs.LG].
- ^ van den Oord, Aaron; Dieleman, Sander; Schrauwen, Benjamin (2013). Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q. (eds.). Advances in Neural Information Processing Systems 26 (PDF). Curran Associates, Inc. pp. 2643–2651. Archived (PDF) from the original on 2017-05-16. Retrieved 2017-06-14.
- PMID 31127715.
- ^ Elkahky, Ali Mamdouh; Song, Yang; He, Xiaodong (1 May 2015). "A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems". Microsoft Research. Archived from the original on 25 January 2018. Retrieved 14 June 2017.
- from the original on 9 May 2021. Retrieved 23 November 2015.
- S2CID 3821594.
- PMID 27521897.
- ^ "DeepMind's protein-folding AI has solved a 50-year-old grand challenge of biology". MIT Technology Review. Retrieved 2024-05-10.
- ^ Shead, Sam (2020-11-30). "DeepMind solves 50-year-old 'grand challenge' with protein folding A.I." CNBC. Retrieved 2024-05-10.
- ^ S2CID 229339809.
- S2CID 2088679.
- from the original on 2021-05-09. Retrieved 2019-11-12.
- S2CID 220733699.
- PMID 35406591.
- S2CID 35350962.
- ^ "Colorizing and Restoring Old Images with Deep Learning". FloydHub Blog. 13 November 2018. Archived from the original on 11 October 2019. Retrieved 11 October 2019.
- ^ Schmidt, Uwe; Roth, Stefan. Shrinkage Fields for Effective Image Restoration (PDF). Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. Archived (PDF) from the original on 2018-01-02. Retrieved 2018-01-01.
- S2CID 204092079.
- ^ Czech, Tomasz (28 June 2018). "Deep learning: the next frontier for money laundering detection". Global Banking and Finance Review. Archived from the original on 2018-11-16. Retrieved 2018-07-15.
- ^ Nuñez, Michael (2023-11-29). "Google DeepMind's materials AI has already discovered 2.2 million new crystals". VentureBeat. Retrieved 2023-12-19.
- PMID 38030720.
- S2CID 265503872.
- ^ a b c "Army researchers develop new algorithms to train robots". EurekAlert!. Archived from the original on 28 August 2018. Retrieved 29 August 2018.
- S2CID 57379996.
- S2CID 212755458.
- PMID 32001523.
- PMID 30082389.
- S2CID 235340737.
- S2CID 220055785.
- PMID 37962497.
- ^ Sivakumar, Ramakrishnan (2023-11-27). "GraphCast: A breakthrough in Weather Forecasting". Medium. Retrieved 2024-05-19.
- doi:10.14336/AD.
- S2CID 1119517.
- ISBN 978-0-262-55030-7.
- PMID 12662587.
- S2CID 5818342.
- ^ S. Blakeslee, "In brain's early growth, timetable may be critical", The New York Times, Science Section, pp. B5–B6, 1995.
- PMID 1903542.
- S2CID 2376781.
- S2CID 9868901.
- S2CID 24504018.
- S2CID 7504633.
- S2CID 14663106.
- S2CID 16560320.
- S2CID 16970545.
- S2CID 39281431.
- PMID 26157000.
- ^ Metz, C. (12 December 2013). "Facebook's 'Deep Learning' Guru Reveals the Future of AI". Wired. Archived from the original on 28 March 2014. Retrieved 26 August 2017.
- S2CID 4460235.
- S2CID 515925.
- ^ "A Google DeepMind Algorithm Uses Deep Learning and More to Master the Game of Go | MIT Technology Review". MIT Technology Review. Archived from the original on 1 February 2016. Retrieved 30 January 2016.
- ^ Metz, Cade (6 November 2017). "A.I. Researchers Leave Elon Musk Lab to Begin Robotics Start-Up". The New York Times. Archived from the original on 7 July 2019. Retrieved 5 July 2019.
- S2CID 5613334.
- ^ "Talk to the Algorithms: AI Becomes a Faster Learner". governmentciomedia.com. 16 May 2018. Archived from the original on 28 August 2018. Retrieved 29 August 2018.
- ^ Marcus, Gary (14 January 2018). "In defense of skepticism about deep learning". Gary Marcus. Archived from the original on 12 October 2018. Retrieved 11 October 2018.
- ^ Knight, Will (14 March 2017). "DARPA is funding projects that will try to open up AI's black boxes". MIT Technology Review. Archived from the original on 4 November 2019. Retrieved 2 November 2017.
- ^ Alexander Mordvintsev; Christopher Olah; Mike Tyka (17 June 2015). "Inceptionism: Going Deeper into Neural Networks". Google Research Blog. Archived from the original on 3 July 2015. Retrieved 20 June 2015.
- ^ Alex Hern (18 June 2015). "Yes, androids do dream of electric sheep". The Guardian. Archived from the original on 19 June 2015. Retrieved 20 June 2015.
- .
- PMID 33733213.
- ISBN 978-1-108-59661-9.
- hdl:10754/666314.
- ^ a b c Goertzel, Ben (2015). "Are there Deep Reasons Underlying the Pathologies of Today's Deep Learning Algorithms?" (PDF). Archived (PDF) from the original on 2015-05-13. Retrieved 2015-05-10.
- ].
- ].
- .
- ^ Miller, G. A., and N. Chomsky. "Pattern conception". Paper for Conference on pattern detection, University of Michigan. 1957.
- ^ Eisner, Jason. "Deep Learning of Recursive Structure: Grammar Induction". Archived from the original on 2017-12-30. Retrieved 2015-05-10.
- ^ "Hackers Have Already Started to Weaponize Artificial Intelligence". Gizmodo. 11 September 2017. Archived from the original on 11 October 2019. Retrieved 11 October 2019.
- ^ "How hackers can force AI to make dumb mistakes". The Daily Dot. 18 June 2018. Archived from the original on 11 October 2019. Retrieved 11 October 2019.
- ^ a b c d e "AI Is Easy to Fool—Why That Needs to Change". Singularity Hub. 10 October 2017. Archived from the original on 11 October 2017. Retrieved 11 October 2017.
- from the original on 2017-10-10. Retrieved 2017-10-11.
- ^ Tubaro, Paola (2020). "Whose intelligence is artificial intelligence?". Global Dialogue: 38–39.
- ^ S2CID 209363848.
Further reading
- Bishop, Christopher M.; Bishop, Hugh (2024). Deep learning: foundations and concepts. Springer. ISBN 978-3-031-45467-7.
- Prince, Simon J. D. (2023). Understanding deep learning. The MIT Press. ISBN 9780262048644.
- ISBN 978-0-26203561-3. Archived from the original on 2016-04-16. Retrieved 2021-05-09, introductory textbook.)
{{cite book}}
: CS1 maint: postscript (link