Ataxia

Source: Wikipedia, the free encyclopedia.
(Redirected from
Gluten ataxia
)

Ataxia
SpecialtyNeurology, Psychiatry
Symptoms
  • Lack of coordination
  • Slurred speech
  • Trouble eating and swallowing
  • Deterioration of fine motor skills
  • Difficulty walking
  • Gait abnormalities
  • Eye movement abnormalities
  • Tremors
  • Heart problems

Ataxia (from

eye movements, that indicates dysfunction of parts of the nervous system that coordinate movement, such as the cerebellum
.

These nervous system dysfunctions occur in several different patterns, with different results and different possible causes. Ataxia can be limited to one side of the body, which is referred to as hemiataxia. Friedreich's ataxia has gait abnormality as the most commonly presented symptom. Dystaxia is a mild degree of ataxia.[1]

Types

Cerebellar

The term

asynergy, delayed reaction time, and dyschronometria.[5] Individuals with cerebellar ataxia could also display instability of gait, difficulty with eye movements, dysarthria, dysphagia, hypotonia, dysmetria, and dysdiadochokinesia.[3] These deficits can vary depending on which cerebellar structures have been damaged, and whether the lesion is bi- or unilateral.[citation needed
]

People with cerebellar ataxia may initially present with poor balance, which could be demonstrated as an inability to stand on one leg or perform

titubation) may be seen in individuals with cerebellar ataxia.[3]

Dysmetria is thought to be caused by a deficit in the control of interaction

extension of the elbow would create a torque at the wrist
. These torques increase as the speed of movement increases and must be compensated and adjusted for to create coordinated movement. This may, therefore, explain decreased coordination at higher movement velocities and accelerations.

Sensory

The term

dorsal columns of the spinal cord, because they carry proprioceptive information up to the brain. In some cases, the cause of sensory ataxia may instead be dysfunction of the various parts of the brain that receive positional information, including the cerebellum, thalamus, and parietal lobes.[13]

Sensory ataxia presents itself with an unsteady "stomping" gait with heavy heel strikes, as well as a postural instability that is usually worsened when the lack of proprioceptive input cannot be compensated for by visual input, such as in poorly lit environments.[14][15]

Physicians can find evidence of sensory ataxia during physical examination by having patients stand with their feet together and eyes shut. In affected patients, this will cause the instability to worsen markedly, producing wide oscillations and possibly a fall; this is called a positive Romberg's test. Worsening of the finger-pointing test with the eyes closed is another feature of sensory ataxia. Also, when patients are standing with arms and hands extended toward the physician, if the eyes are closed, the patients' fingers tend to "fall down" and then be restored to the horizontal extended position by sudden muscular contractions (the "ataxic hand").[16][17]

Vestibular

The term vestibular ataxia is used to indicate ataxia due to dysfunction of the

dysequilibrium may be the sole presentation.[18]

Causes

The three types of ataxia have overlapping causes, so can either coexist or occur in isolation. Cerebellar ataxia can have many causes despite normal neuroimaging.[19]

Focal lesions

Any type of focal lesion of the central nervous system (such as stroke, brain tumor, multiple sclerosis, inflammatory [such as sarcoidosis], and "chronic lymphocytyc inflammation with pontine perivascular enhancement responsive to steroids syndrome" [CLIPPERS[20]]) will cause the type of ataxia corresponding to the site of the lesion: cerebellar if in the cerebellum; sensory if in the dorsal spinal cord...to include cord compression by thickened ligamentum flavum or stenosis of the boney spinal canal...(and rarely in the thalamus or parietal lobe); or vestibular if in the vestibular system (including the vestibular areas of the cerebral cortex).[citation needed]

Exogenous substances (metabolic ataxia)

Exogenous substances that cause ataxia mainly do so because they have a depressant effect on central nervous system function. The most common example is ethanol (alcohol), which is capable of causing reversible cerebellar and vestibular ataxia. Chronic intake of ethanol causes atrophy of the cerebellum by oxidative and endoplasmic reticulum stresses induced by thiamine deficiency.[21]

Other examples include various prescription drugs (e.g. most

Radiation poisoning

Ataxia can be induced as a result of severe acute radiation poisoning with an absorbed dose of more than 30 grays.[26]Furthermore, those with ataxia telangiectasia may have a high sensitivity towards gamma rays and x-rays.[27]

Vitamin B12 deficiency

Vitamin B12 deficiency may cause, among several neurological abnormalities, overlapping cerebellar and sensory ataxia.[28] Neuropsychological symptoms may include sense loss, difficulty in proprioception, poor balance, loss of sensation in the feet, changes in reflexes, dementia, and psychosis, can be reversible with treatment.[29] Complications may include a neurological complex known as subacute combined degeneration of spinal cord, and other neurological disorders.[30]

Hypothyroidism

Symptoms of neurological dysfunction may be the presenting feature in some patients with

thyroid hormone replacement therapy.[31][32]

Causes of isolated sensory ataxia

Peripheral neuropathies may cause generalised or localised sensory ataxia (e.g. a limb only) depending on the extent of the neuropathic involvement. Spinal disorders of various types may cause sensory ataxia from the lesioned level below, when they involve the dorsal columns.[33][34][35]

Non-hereditary cerebellar degeneration

Non-hereditary causes of cerebellar degeneration include chronic

cerebellitis.[42]

Hereditary ataxias

Ataxia may depend on

abetalipoproteinaemia. An example of X-linked ataxic condition is the rare fragile X-associated tremor/ataxia syndrome
or FXTAS.

Arnold–Chiari malformation (congenital ataxia)

cerebellar tonsils and the medulla through the foramen magnum, sometimes causing hydrocephalus as a result of obstruction of cerebrospinal fluid outflow.[44]

Succinic semialdehyde dehydrogenase deficiency

neurological dysfunction.[45]

Wilson's disease

neurological and organ impairments.[48]

Gluten ataxia

A male with gluten ataxia: previous situation and evolution after three months of a gluten-free diet

Gluten ataxia is an

neurons in the cerebellum as a result of gluten exposure is irreversible.[50][52] It accounts for 40% of ataxias of unknown origin and 15% of all ataxias.[52] Less than 10% of people with gluten ataxia present any gastrointestinal symptom and only about 40% have intestinal damage.[50][52] This entity is classified into primary auto-immune cerebellar ataxias (PACA).[53]There is a continuum between presymptomatic ataxia and immune ataxias with clinical deficits. [54]

Potassium pump

Malfunction of the

Purkinje neurons.[55] This suggests that the pump might not simply be a homeostatic, "housekeeping" molecule for ionic gradients; but could be a computational element in the cerebellum and the brain.[56] Indeed, an ouabain block of Na+
-K+
pumps in the cerebellum of a live mouse results in it displaying ataxia and dystonia.[57]
Ataxia is observed for lower ouabain concentrations, dystonia is observed at higher ouabain concentrations.

Cerebellar ataxia associated with anti-GAD antibodies

Antibodies against the enzyme glutamic acid decarboxylase (GAD: enzyme changing glutamate into GABA) cause cerebellar deficits.[58] The antibodies impair motor learning and cause behavioral deficits.[59] GAD antibodies related ataxia is part of the group called immune-mediated cerebellar ataxias.[60] The antibodies induce a synaptopathy.[61] The cerebellum is particularly vulnerable to autoimmune disorders.[62] Cerebellar circuitry has capacities to compensate and restore function thanks to cerebellar reserve, gathering multiple forms of plasticity. LTDpathies gather immune disorders targeting long-term depression (LTD), a form of plasticity.[63]

Diagnosis

  • Imaging studies - A CT scan or MRI of the brain might help determine potential causes. An MRI can sometimes show shrinkage of the cerebellum and other brain structures in people with ataxia. It may also show other treatable findings, such as a blood clot or benign tumour, that could be pressing on the cerebellum.
  • Lumbar puncture (spinal tap) - A needle is inserted into the lower back (lumbar region) between two lumbar vertebrae to obtain a sample of cerebrospinal fluid for testing.
  • Genetic testing - Determines whether the mutation that causes one of the hereditary ataxic conditions is present. Tests are available for many but not all of the hereditary ataxias.

Treatment

The treatment of ataxia and its effectiveness depend on the underlying cause. Treatment may limit or reduce the effects of ataxia, but it is unlikely to eliminate them entirely. Recovery tends to be better in individuals with a single focal injury (such as

benign tumour), compared to those who have a neurological degenerative condition.[64] A review of the management of degenerative ataxia was published in 2009.[65] A small number of rare conditions presenting with prominent cerebellar ataxia are amenable to specific treatment and recognition of these disorders is critical. Diseases include vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann–Pick type C disease, Refsum's disease, glucose transporter type 1 deficiency, episodic ataxia type 2, gluten ataxia, glutamic acid decarboxylase ataxia.[66] Novel therapies target the RNA defects associated with cerebellar disorders, using in particular anti-sense oligonucleotides.[67]

The movement disorders associated with ataxia can be managed by pharmacological treatments and through

proprioceptive neuromuscular facilitation (PNF), and balance training; however, therapy is often highly individualized and gait and coordination training are large components of therapy.[71]

Current research suggests that, if a person is able to walk with or without a mobility aid, physical therapy should include an exercise program addressing five components: static balance, dynamic balance, trunk-limb coordination, stairs, and contracture prevention. Once the physical therapist determines that the individual is able to safely perform parts of the program independently, it is important that the individual be prescribed and regularly engage in a supplementary home exercise program that incorporates these components to further improve long term outcomes. These outcomes include balance tasks, gait, and individual activities of daily living. While the improvements are attributed primarily to changes in the brain and not just the hip or ankle joints, it is still unknown whether the improvements are due to adaptations in the cerebellum or compensation by other areas of the brain.[69]

Decomposition, simplification, or slowing of multijoint movement may also be an effective strategy that therapists may use to improve function in patients with ataxia.[13] Training likely needs to be intense and focused—as indicated by one study performed with stroke patients experiencing limb ataxia who underwent intensive upper limb retraining.[72] Their therapy consisted of constraint-induced movement therapy which resulted in improvements of their arm function.[72] Treatment should likely include strategies to manage difficulties with everyday activities such as walking. Gait aids (such as a cane or walker) can be provided to decrease the risk of falls associated with impairment of balance or poor coordination. Severe ataxia may eventually lead to the need for a wheelchair. To obtain better results, possible coexisting motor deficits need to be addressed in addition to those induced by ataxia. For example, muscle weakness and decreased endurance could lead to increasing fatigue and poorer movement patterns.[citation needed]

There are several assessment tools available to therapists and health care professionals working with patients with ataxia. The International Cooperative Ataxia Rating Scale (ICARS) is one of the most widely used and has been proven to have very high reliability and validity.[73] Other tools that assess motor function, balance and coordination are also highly valuable to help the therapist track the progress of their patient, as well as to quantify the patient's functionality. These tests include, but are not limited to:

  • The Berg Balance Scale
  • Tandem Walking (to test for Tandem gaitability)
  • Scale for the Assessment and Rating of Ataxia (SARA)[74]
  • tapping tests – The person must quickly and repeatedly tap their arm or leg while the therapist monitors the amount of dysdiadochokinesia.[75]
  • finger-nose testing[75] – This test has several variations including finger-to-therapist's finger, finger-to-finger, and alternate nose-to-finger.[76]

Other uses

The term "ataxia" is sometimes used in a broader sense to indicate lack of coordination in some physiological process. Examples include optic ataxia (lack of coordination between visual inputs and hand movements, resulting in inability to reach and grab objects) and ataxic respiration (lack of coordination in respiratory movements, usually due to dysfunction of the respiratory centres in the medulla oblongata).

Optic ataxia may be caused by lesions to the

Balint's syndrome, but can be seen in isolation with injuries to the superior parietal lobule, as it represents a disconnection between visual-association cortex and the frontal premotor and motor cortex.[77]

See also

External links

References

  1. ^ "Dystaxia Definition & Meaning". Dictionary.com. Retrieved 13 September 2023.
  2. ^ "Ataxia - Symptoms & Causes". Mayo Clinic. 3 June 2020. Retrieved 10 August 2020.
  3. ^
    PMID 15377747
    .
  4. . Retrieved 6 May 2012.
  5. .
  6. .
  7. .
  8. ^ .
  9. .
  10. .
  11. ^ .
  12. .
  13. ^ .
  14. ^ "Sensory Ataxia". Physiopedia. Retrieved 19 October 2022.
  15. ISSN 2168-3808
    .
  16. .
  17. . Retrieved 16 April 2024.
  18. .
  19. ^ "Ataxia: What It Is, Causes, Symptoms, Treatment & Types". Cleveland Clinic. Retrieved 8 February 2024.
  20. PMID 30151443
    .
  21. .
  22. ^ "Inadvertent Ingestion of Marijuana --- Los Angeles, California, 2009". Archived from the original on 11 May 2011. Retrieved 3 September 2009.
  23. PMID 817697
    .
  24. .
  25. .
  26. ^ "Radiation Exposure and Contamination - Injuries; Poisoning". Merck Manuals Professional Edition. Retrieved 26 December 2022.
  27. PMID 27884168
    .
  28. .
  29. .
  30. . Retrieved 17 July 2022.
  31. .
  32. ^ Pavan MR, Deepak M, Basavaprabhu A, Gupta A (2012). "Doctor i am swaying – An interesting case of ataxia". Journal of Clinical and Diagnostic Research. Archived from the original on 8 May 2014. Retrieved 2 May 2013.
  33. S2CID 12333200
    .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. ^ Walshe JM. Clarke CE, Nicholl DJ (eds.). "Wilson's Disease" (PDF). Birmingham Movement Disorders Coursebook. Archived from the original (PDF) on 10 September 2011.
  47. PMID 33354453
    .
  48. ^ Haldeman-Englert C. "Wilson's disease – PubMed Health". PubMed Health. Archived from the original on 27 July 2014.
  49. PMID 36555205
    .
  50. ^ .
  51. .
  52. ^ .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. .
  64. .
  65. ^ .
  66. .
  67. .
  68. .
  69. ^ .
  70. .
  71. .
  72. ^ .
  73. .
  74. .
  75. ^ .
  76. ^ "OPETA: Neurologic Examination". Online physical exam teaching assistant. The UF College of Medicine Harrell Center. Archived from the original on 18 March 2012. Retrieved 7 May 2012.
  77. S2CID 45201083
    .

Further reading