Claude Shannon: Difference between revisions

Source: Wikipedia, the free encyclopedia.
Content deleted Content added
Line 1: Line 1:
{{cleanup|reason=postnominals required|date=March 2019}}
{{Use mdy dates|date=November 2014}}
{{Use mdy dates|date=November 2014}}
{{Infobox scientist
{{Infobox scientist

Revision as of 23:43, 27 March 2019

Claude Shannon
Born(1916-04-30)April 30, 1916
Petoskey, Michigan, United States
DiedFebruary 24, 2001(2001-02-24) (aged 84)
Medford, Massachusetts, United States
NationalityAmerican
Alma materUniversity of Michigan,
MIT
Known for
Awards
Theses
Doctoral advisorFrank Lauren Hitchcock
Doctoral studentsDanny Hillis
Ivan Sutherland
Bert Sutherland

Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as "the father of information theory".[1][2] Shannon is noted for having founded information theory with a landmark paper, A Mathematical Theory of Communication, that he published in 1948.

He is also well known for founding

telecommunications
.

Biography

Childhood

Shannon was born in Petoskey, Michigan and grew up in Gaylord, Michigan.[4] His father, Claude, Sr. (1862–1934), a descendant of early settlers of New Jersey, was a self-made businessman, and for a while, a Judge of Probate. Shannon's mother, Mabel Wolf Shannon (1890–1945), was a language teacher, and also served as the principal of Gaylord High School.

Most of the first 16 years of Shannon's life were spent in Gaylord, where he attended public school, graduating from

telegraph system to a friend's house a half-mile away.[5] While growing up, he also worked as a messenger for the Western Union
company.

His childhood hero was Thomas Edison, who he later learned was a distant cousin. Both Shannon and Edison were descendants of John Ogden (1609–1682), a colonial leader and an ancestor of many distinguished people.[6][7]

Shannon was apolitical and an atheist.[8]

Logic circuits

In 1932, Shannon entered the University of Michigan, where he was introduced to the work of George Boole. He graduated in 1936 with two bachelor's degrees: one in electrical engineering and the other in mathematics.

In 1936, Shannon began his graduate studies in

Boolean algebra could solve. In the last chapter, he presented diagrams of several circuits, including a 4-bit full adder.[10]

Using this property of electrical switches to implement logic is the fundamental concept that underlies all

digital circuit design, as it became widely known in the electrical engineering community during and after World War II. The theoretical rigor of Shannon's work superseded the ad hoc methods that had prevailed previously. Howard Gardner called Shannon's thesis "possibly the most important, and also the most noted, master's thesis of the century."[12]

Shannon received his Ph.D. degree from MIT in 1940. Vannevar Bush had suggested that Shannon should work on his dissertation at the Cold Spring Harbor Laboratory, in order to develop a mathematical formulation for Mendelian genetics. This research resulted in Shannon's PhD thesis, called An Algebra for Theoretical Genetics.[13]

In 1940, Shannon became a National Research Fellow at the Institute for Advanced Study in Princeton, New Jersey. In Princeton, Shannon had the opportunity to discuss his ideas with influential scientists and mathematicians such as Hermann Weyl and John von Neumann, and he also had occasional encounters with Albert Einstein and Kurt Gödel. Shannon worked freely across disciplines, and this ability may have contributed to his later development of mathematical information theory.[14]

Wartime research

Shannon then joined Bell Labs to work on fire-control systems and cryptography during World War II, under a contract with section D-2 (Control Systems section) of the National Defense Research Committee (NDRC).

Shannon is credited with the invention of signal-flow graphs, in 1942. He discovered the topological gain formula while investigating the functional operation of an analog computer.[15]

For two months early in 1943, Shannon came into contact with the leading British mathematician

British Government Code and Cypher School at Bletchley Park to break the ciphers used by the Kriegsmarine U-boats in the north Atlantic Ocean.[16] He was also interested in the encipherment of speech and to this end spent time at Bell Labs. Shannon and Turing met at teatime in the cafeteria.[16] Turing showed Shannon his 1936 paper that defined what is now known as the "Universal Turing machine";[17][18]
This impressed Shannon, as many of its ideas complemented his own.

In 1945, as the war was coming to an end, the NDRC was issuing a summary of technical reports as a last step prior to its eventual closing down. Inside the volume on fire control, a special essay titled Data Smoothing and Prediction in Fire-Control Systems, coauthored by Shannon, Ralph Beebe Blackman, and Hendrik Wade Bode, formally treated the problem of smoothing the data in fire-control by analogy with "the problem of separating a signal from interfering noise in communications systems."[19] In other words, it modeled the problem in terms of data and signal processing and thus heralded the coming of the Information Age.

Shannon's work on cryptography was even more closely related to his later publications on

Bell System Technical Journal. This paper incorporated many of the concepts and mathematical formulations that also appeared in his A Mathematical Theory of Communication. Shannon said that his wartime insights into communication theory and cryptography developed simultaneously and that "they were so close together you couldn’t separate them".[21] In a footnote near the beginning of the classified report, Shannon announced his intention to "develop these results … in a forthcoming memorandum on the transmission of information."[22]

While he was at Bell Labs, Shannon proved that the

cryptographic one-time pad is unbreakable in his classified research that was later published in October 1949. He also proved that any unbreakable system must have essentially the same characteristics as the one-time pad: the key must be truly random, as large as the plaintext, never reused in whole or part, and be kept secret.[23]

Information theory

In 1948, the promised memorandum appeared as "A Mathematical Theory of Communication", an article in two parts in the July and October issues of the Bell System Technical Journal. This work focuses on the problem of how best to encode the

Shannon-Fano coding
, was first proposed in the 1948 article.

The book, co-authored with

John Robinson Pierce
's Symbols, Signals, and Noise.

Information theory's fundamental contribution to

whitespace
as the 27th letter of the alphabet actually lowers uncertainty in written language, providing a clear quantifiable link between cultural practice and probabilistic cognition.

Another notable paper published in 1949 is "

sampling theory
, which is concerned with representing a continuous-time signal from a (uniform) discrete set of samples. This theory was essential in enabling telecommunications to move from analog to digital transmissions systems in the 1960s and later.

He returned to MIT to hold an endowed chair in 1956.

Teaching at MIT

In 1956 Shannon joined the MIT faculty to work in the Research Laboratory of Electronics (RLE). He continued to serve on the MIT faculty until 1978.

Later life

Shannon developed

digital revolution he had helped create. He died in 2001. He was survived by his wife, Mary Elizabeth Moore Shannon, his son, Andrew Moore Shannon, his daughter, Margarita Shannon, his sister, Catherine Shannon Kay, and his two granddaughters.[25][26] His wife stated in his obituary that, had it not been for Alzheimer's disease, "He would have been bemused" by it all.[27]

Hobbies and inventions

The Minivac 601, a digital computer trainer designed by Shannon.

Outside of Shannon's academic pursuits, he was interested in

juggling machines, and a flame-throwing trumpet.[28] One of his more humorous devices was a box kept on his desk called the "Ultimate Machine", based on an idea by Marvin Minsky. Otherwise featureless, the box possessed a single switch on its side. When the switch was flipped, the lid of the box opened and a mechanical hand reached out, flipped off the switch, then retracted back inside the box. In addition, he built a device that could solve the Rubik's Cube puzzle.[6]

Shannon designed the

digital computer trainer to teach business people about how computers functioned. It was sold by the Scientific Development Corp
starting in 1961.

He is also considered the co-inventor of the first wearable computer along with Edward O. Thorp.[29] The device was used to improve the odds when playing roulette.

Personal life

Shannon married Norma Levor, a wealthy, Jewish, left-wing intellectual in January 1940. The marriage ended in divorce after about a year. Levor later married Ben Barzman.[30]

Shannon met his second wife Betty Shannon (née Mary Elizabeth Moore) when she was a numerical analyst at Bell Labs. They were married in 1949.[25] Betty assisted Claude in building some of his most famous inventions.[31]

Claude and Betty Shannon had three children, Robert James Shannon, Andrew Moore Shannon, and Margarita Shannon, and raised his family in Winchester, Massachusetts. Their oldest son, Robert Shannon, died in 1998 at the age of 45.

After suffering the progressive declines of Alzheimer's disease over some years, Shannon died at the age of 84, on February 24, 2001.[32]

Tributes

To commemorate Shannon's achievements, there were celebrations of his work in 2001.

There are currently six statues of Shannon sculpted by

AT&T Shannon Labs.[33] After the breakup of the Bell System, the part of Bell Labs that remained with AT&T Corporation
was named Shannon Labs in his honor.

According to

digital revolution, and every device containing a microprocessor or microcontroller is a conceptual descendant of Shannon's publication in 1948:[34] "He's one of the great men of the century. Without him, none of the things we know today would exist. The whole digital revolution started with him."[27] The unit shannon
is named after Claude Shannon.

A Mind at Play, a biography of Shannon written by Jimmy Soni and Rob Goodman, was published in 2017.[35]

On April 30, 2016 Shannon was honored with a Google Doodle to celebrate his life on what would have been his 100th birthday.[36][37][38][39][40][41]

Other work

electromechanical mouse Theseus (named after Theseus from Greek mythology) which he tried to have solve the maze in one of the first experiments in artificial intelligence
.

Shannon's mouse

"Theseus", created in 1950, was a magnetic mouse controlled by an electromechanical relay circuit that enabled it to move around a labyrinth of 25 squares. Its dimensions were the same as those of an average mouse.[2] The maze configuration was flexible and it could be modified arbitrarily by rearranging movable partitions.[2] The mouse was designed to search through the corridors until it found the target. Having travelled through the maze, the mouse could then be placed anywhere it had been before, and because of its prior experience it could go directly to the target. If placed in unfamiliar territory, it was programmed to search until it reached a known location and then it would proceed to the target, adding the new knowledge to its memory and learning new behavior.[2] Shannon's mouse appears to have been the first artificial learning device of its kind.[2]

Shannon's estimate for the complexity of chess

In 1949 Shannon completed a paper (published in March 1950) which estimates the game-tree complexity of chess, which is approximately 10120. This number is now often referred to as the "Shannon number", and is still regarded today as an accurate estimate of the game's complexity. The number is often cited as one of the barriers to solving the game of chess using an exhaustive analysis (i.e. brute force analysis).[42][43]

Shannon's computer chess program

On March 9, 1949, Shannon presented a paper called "Programming a Computer for playing Chess." The paper was presented at the National Institute for Radio Engineers Convention in New York. He described how to program a computer to play chess based on position scoring and move selection. He proposed basic strategies for restricting the number of possibilities to be considered in a game of chess. In March 1950 it was published in Philosophical Magazine, and is considered one of the first articles published on the topic of programming a computer for playing chess, and using a computer to

mobility, adding 0.1 point for each legal move available. Finally, he considered checkmate
to be the capture of the king, and gave the king the artificial value of 200 points. Quoting from the paper:

The coefficients .5 and .1 are merely the writer's rough estimate. Furthermore, there are many other terms that should be included. The formula is given only for illustrative purposes. Checkmate has been artificially included here by giving the king the large value 200 (anything greater than the maximum of all other terms would do).

The evaluation function was clearly for illustrative purposes, as Shannon stated. For example, according to the function, pawns that are doubled as well as isolated would have no value at all, which is clearly unrealistic.

Shannon's maxim

Shannon formulated a version of Kerckhoffs' principle as "The enemy knows the system". In this form it is known as "Shannon's maxim".

Commemorations

Shannon Centenary

Claude Shannon Centenary

The Shannon Centenary, 2016, marked the life and influence of Claude Elwood Shannon on the hundredth anniversary of his birth on April 30, 1916. It was inspired in part by the

IEEE Information Theory Society Newsletter.[49]

A detailed listing of confirmed events was available on the website of the IEEE Information Theory Society.[50]

Some of the planned activities included:

  • Bell Labs hosted the First Shannon Conference on the Future of the Information Age on April 28 – 29, 2016 in Murray Hill, NJ to celebrate Claude Shannon and the continued impact of his legacy on society. The event includes keynote speeches by global luminaries and visionaries of the information age who will explore the impact of information theory on society and our digital future, informal recollections, and leading technical presentations on subsequent related work in other areas such as bioinformatics, economic systems, and social networks. There is also a student competition
  • Bell Labs launched a Web exhibit on April 30, 2016, chronicling Shannon's hiring at Bell Labs (under an NDRC contract with US Government), his subsequent work there from 1942 through 1957, and details of Mathematics Department. The exhibit also displayed bios of colleagues and managers during his tenure, as well as original versions of some of the technical memoranda which subsequently became well known in published form.
  • The Republic of Macedonia is planning a commemorative stamp. A USPS commemorative stamp is being proposed, with an active petition.[51]
  • A documentary on Claude Shannon and on the impact of information theory, The Bit Player, is being produced by Sergio Verdú and Mark Levinson.
  • A trans-Atlantic celebration of both George Boole's bicentenary and Claude Shannon's centenary that is being led by University College Cork and the Massachusetts Institute of Technology. A first event was a workshop in Cork, When Boole Meets Shannon,[52] and will continue with exhibits at the Boston Museum of Science and at the MIT Museum.[53]
  • Many organizations around the world are holding observance events, including the Boston Museum of Science, the Heinz-Nixdorf Museum, the Institute for Advanced Study, Technische Universität Berlin, University of South Australia (UniSA), Unicamp (Universidade Estadual de Campinas), University of Toronto, Chinese University of Hong Kong, Cairo University, Telecom ParisTech, National Technical University of Athens, Indian Institute of Science, Indian Institute of Technology Bombay,
    Indian Institute of Technology Kanpur, Nanyang Technological University of Singapore, University of Maryland, University of Illinois at Chicago, École Polytechnique Federale de Lausanne, The Pennsylvania State University (Penn State), University of California Los Angeles, Massachusetts Institute of Technology, Chongqing University of Posts and Telecommunications
    , and University of Illinois at Urbana-Champaign.
  • A series of geocaches, dedicated to the work of Claude Shannon, will be deployed in Munich, Germany. The first cache has already been placed.[54]
  • A logo that appears on this page was crowdsourced on Crowdspring.[55]
  • The Math Encounters presentation of May 4, 2016 at the
    Information Theory. A video recording and other material are available.[56]

Awards and honors list

The Claude E. Shannon Award was established in his honor; he was also its first recipient, in 1972.[57]

See also

References

  1. .
  2. ^ a b c d e "Bell Labs Advances Intelligent Networks". Archived from the original on July 22, 2012. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  3. .
  4. ^ "Claude Shannon". nyu.edu. Retrieved September 10, 2014.
  5. ^ "The Lives They Lived: Claude Shannon", New York Times, 30 December 2001
  6. ^ a b MIT Professor Claude Shannon dies; was founder of digital communications, MIT — News office, Cambridge, Massachusetts, February 27, 2001
  7. . Retrieved December 9, 2016.
  8. . Shannon described himself as an atheist and was outwardly apolitical.
  9. ^ Robert Price (1982). "Claude E. Shannon, an oral history". IEEE Global History Network. IEEE. Retrieved July 14, 2011.
  10. ^ a b Claude Shannon, "A Symbolic Analysis of Relay and Switching Circuits," unpublished MS Thesis, Massachusetts Institute of Technology, August 10, 1937.
  11. .
  12. .
  13. ^ C. E. Shannon, "An algebra for theoretical genetics," (Ph.D. Thesis, Massachusetts Institute of Technology, 1940), MIT-THESES//1940–3 Online text at MIT — Contains a biography on pp. 64–65.
  14. ^ Erico Marui Guizzo, “The Essential Message: Claude Shannon and the Making of Information Theory” (M.S. Thesis, Massachusetts Institute of Technology, Dept. of Humanities, Program in Writing and Humanistic Studies, 2003), 14.
  15. ^ Okrent, Howard; McNamee, Lawrence P. (1970). "3. 3 Flowgraph Theory" (PDF). NASAP-70 User's and Programmer's manual. Los Angeles, California: School of Engineering and Applied Science, University of California at Los Angeles. pp. 3–9. Retrieved March 4, 2016.
  16. ^
  17. .
  18. .
  19. ^ quoted in Kahn, The Codebreakers, p. 744.
  20. ^ quoted in Erico Marui Guizzo, "The Essential Message: Claude Shannon and the Making of Information Theory," Archived May 28, 2008, at the Wayback Machine unpublished MS thesis, Massachusetts Institute of Technology, 2003, p. 21.
  21. ^ Shannon, Claude (1949). "Communication Theory of Secrecy Systems". Bell System Technical Journal 28 (4): 656–715.
  22. .
  23. ^ a b Weisstein, Eric. "Shannon, Claude Elwood (1916–2001)". World of Scientific Biography. Wolfram Research.
  24. ^ "Claude Shannon – computer science theory". www.thocp.net. The History of Computing Project. Retrieved December 9, 2016.
  25. ^
    The Star-Ledger
    , obituary by Kevin Coughlin February 27, 2001)
  26. ^ "People: Shannon, Claude Elwood". MIT Museum. Retrieved December 9, 2016.
  27. ^ The Invention of the First Wearable Computer Online paper by Edward O. Thorp of Edward O. Thorp & Associates
  28. ^ Jimmy Soni; Rob Goodman (2017). A Mind At Play: How Claude Shannon Invented the Information Age. Simon and Schuster. pp. 63, 80.
  29. ^ "Betty Shannon, Unsung Mathematical Genius". Scientific American Blog Network. Retrieved July 26, 2017.
  30. ^ Johnson, George. "Claude Shannon, Mathematician, Dies at 84". Retrieved October 4, 2018.
  31. ^ "Claude Shannon Statue Dedications". Archived from the original on July 31, 2010. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  32. ^ C. E. Shannon: A mathematical theory of communication. Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948
  33. ^ George Dyson (July 21, 2017). "The Elegance of Ones and Zeroes". Wall Street Journal. Retrieved August 15, 2017.
  34. ^ Claude Shannon’s 100th birthday Google, 2016
  35. ^ Katie Reilly (April 30, 2016). "Google Doodle Honors Mathematician-Juggler Claude Shannon". Time.
  36. ^ Menchie Mendoza (May 2, 2016). "Google Doodle Celebrates 100th Birthday Of Claude Shannon, Father Of Information Theory". Tech Times.
  37. ^ "Google Doodle commemorates 'father of information theory' Claude Shannon on his 100th birthday". Firstpost. May 3, 2016.
  38. ^ Jonathan Gibbs (April 29, 2016). "Claude Shannon: Three things you'll wish you owned that the mathematician invented". The Independent.
  39. ^ David Z. Morris (April 30, 2016). "Google Celebrates 100th Birthday of Claude Shannon, the Inventor of the Bit". Fortune.
  40. ^ a b Claude Shannon (1950). "Programming a Computer for Playing Chess" (PDF). Philosophical Magazine. 41 (314).
  41. ^ Dr. James Grime. "How many chess games are possible? (films by Brady Haran). MSRI, Mathematical Sciences". Numberphile, July 24, 2015.
  42. ^ http://billwall.phpwebhosting.com/articles/computer_early_chess.htm
  43. IEEE
    . June 2015.
  44. Technion
    .
  45. ^ "Sergio Verdú". Twitter.
  46. ^ "Newsletter". IEEE Information Theory Society. IEEE. September 2014.
  47. ^ "Shannon Centenary". IEEE Information Theory Society. IEEE.
  48. ^ "Shannon's centenary US postal stamp".
  49. ^ "-George Boole 200-Conferences". Archived from the original on September 6, 2015. Retrieved September 21, 2015. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  50. ^ "Compute and Communicate – A Boole/Shannon Celebration".
  51. ^ Geocaching. "GC6ACQE Shanniversary #1: Information Theory (DE/EN) (Traditional Cache) in Bayern, Germany created by sigurd_fjoelskaldr".
  52. ^ "crowdSPRING".
  53. ^ "Saving Face: Information Tricks for Love and Life (Math Encounters Presentation at the National Museum of Mathematics". ).
  54. ^ Roberts, Siobhan (April 30, 2016). "Claude Shannon, the Father of the Information Age, Turns 1100100". The New Yorker. Retrieved April 30, 2016.
  55. IEEE. Archived from the original
    (PDF) on March 3, 2016. Retrieved February 27, 2011.
  56. ^ "Claude Shannon". National Academy of Sciences. July 2, 2015. Retrieved March 25, 2019.
  57. IEEE. Archived from the original
    (PDF) on April 22, 2015. Retrieved February 27, 2011.
  58. ^ "C.E. Shannon (1916–2001)". Royal Netherlands Academy of Arts and Sciences. Retrieved July 17, 2015.
  59. ^ "Award Winners (chronological)". Eduard Rhein Foundation. Archived from the original on July 18, 2011. Retrieved February 20, 2011. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)

Further reading

External links