Sterol 14-demethylase

Source: Wikipedia, the free encyclopedia.
sterol 14-demethylase
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

In

enzymology, a sterol 14-demethylase (EC 1.14.13.70) is an enzyme of the cytochrome P450 (CYP) superfamily. It is any member of the CYP51 family. It catalyzes a chemical reaction
such as:

obtusifoliol + 3 O2 + 3 NADPH + 3 H+ 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol + formate + 3 NADP+ + 4 H2O

The 4

.

Ergosterol

Although the

antifungal medications have been developed to inhibit 14α-demethylase activity and prevent the production of this key compound.[3]

Nomenclature

This enzyme belongs to the family of

These are not the typical CYP subfamilies, but only one subfamily is created for each major taxonomic group. CYP51A for Animals, CYP51B for Bacteria. CYP51C for

monocots
only so far) have individual sequence numbers.

CYP subfamily etymology kingdom
CYP51A Animals
Metazoa
CYP51B Bacteria Bacteria
CYP51C Chromista Chromista
CYP51D Dictyostelium Amoebozoa
CYP51E Euglenozoa Excavata
CYP51F Fungi Fungus
CYP51G Green plants Archaeplastida
CYP51H
monocots in Archaeplastida

Function

The biological role of this protein is also well understood. The

fungal infections
(Richardson et al.). Seeking new means to treat such infections, drug researchers have begun targeting the 14α-demethylase enzyme in fungi; destroying the fungal cell's ability to produce ergosterol causes a disruption of the plasma membrane, thereby resulting in cellular leakage and ultimately the death of the pathogen (DrugBank).

azoles to the prosthetic heme group in the enzyme's active site causes a characteristic shift in CYP51 absorbance, creating what is commonly referred to as a type II difference spectrum.[9][10]

Prolonged use of

antifungals has resulted in the emergence of drug resistance among certain fungal strains.[3] Mutations in the coding region of CYP51 genes, overexpression of CYP51, and overexpression of membrane efflux transporters can all lead to resistance to these antifungals.[11][12][13][14][15] Consequently, the focus of azole research is beginning to shift towards identifying new ways to circumvent this major obstacle.[3]

Structure

As of late 2007, 6

structures have been solved for this class of enzymes, with PDB accession codes 1H5Z, 1U13, 1X8V, 2BZ9, 2CI0, and 2CIB
.

References

Further reading