KCNH1

Source: Wikipedia, the free encyclopedia.
KCNH1
Available structures
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002238
NM_172362

NM_001038607
NM_010600

RefSeq (protein)

NP_002229
NP_758872

NP_001033696
NP_034730

Location (UCSC)Chr 1: 210.68 – 211.13 MbChr 1: 191.87 – 192.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Potassium voltage-gated channel subfamily H member 1 is a protein that in humans is encoded by the KCNH1 gene.[5][6][7]

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, subfamily H. This member is a pore-forming (alpha) subunit of a voltage-gated non-inactivating delayed rectifier potassium channel. It is activated at the onset of myoblast differentiation. The gene is highly expressed in brain and in myoblasts. Overexpression of the gene may confer a growth advantage to cancer cells and favor tumor cell proliferation. Alternative splicing of this gene results in two transcript variants encoding distinct isoforms.[7]

Interactions

KCNH1 has been shown to

interact with KCNB1.[8]

Function

The KCNH1 gene encodes a highly conserved voltage-gated potassium channel with predominant expression in the adult central nervous system.[9]

Pathologies

Gabbett and colleagues described Temple–Baraitser syndrome (TBS) in 2008, naming the condition after English clinical geneticists Profs Karen Temple and Michael Baraitser.[10] They then went on to demonstrate that de novo missense mutations in the KCNH1 gene cause deleterious gain of function in the voltage-gated potassium channel, resulting in the multisystem developmental disorder. TBS is categorized by intellectual disabilities, epilepsy, typical facial features, and aplasia of the nails. Simons et al. demonstrated that mutational mosaicism present in the mothers of some probands was responsible for their children's TBS phenotype. This is further evidence of the role that genetic mosaicism plays in the etiology of neurological disorders.[11]

Type 1 Zimmermann–Laband syndrome was later found to be caused by similar mutations in KCNH1.[12] This has led some researchers to believe that type 1 Zimmermann-Laband and Temple-Baraitser syndromes are different manifestations of the same disorder.[13][14]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000143473Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000058248Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 9738473
    .
  6. .
  7. ^ a b "Entrez Gene: KCNH1 potassium voltage-gated channel, subfamily H (eag-related), member 1".
  8. PMID 12060745
    .
  9. ^ "603305 - Potassium channel, voltage-gated; subfamily H, member 1; KCNH1". Online Mendelian Inheritance in Man (OMIM).
  10. S2CID 2532859
    .
  11. .
  12. .
  13. .
  14. .

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on the copyrighted Wikipedia article: KCNH1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy