Brain implant

Source: Wikipedia, the free encyclopedia.

Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's

neural systems and computer chips. This work is part of a wider research field called brain–computer interfaces. (Brain–computer interface research also includes technology such as EEG
arrays that allow interface between mind and machine but do not require direct implantation of a device.)

Neural implants such as

clinical depression
, respectively.

Purpose

Brain implants electrically stimulate, block

biological neural networks) in the brain. This can only be done where the functional associations of these neurons are approximately known. Because of the complexity of neural processing and the lack of access to action potential related signals using neuroimaging techniques, the application of brain implants has been seriously limited until recent advances in neurophysiology and computer processing power. Much research is also being done on the surface chemistry of neural implants in effort to design products which minimize all negative effects that an active implant can have on the brain, and that the body can have on the function of the implant. Researchers are also exploring a range of delivery systems, such as using veins, to deliver these implants without brain surgery; by leaving the skull sealed shut, patients could receive their neural implants without running as great a risk of seizures, strokes, or permanent neural impairments, all of which can be caused by open-brain surgery.[5]

Research and applications

Research in

hearing, cochlear implants are used to stimulate the auditory nerve directly. The vestibulocochlear nerve is part of the peripheral nervous system
, but the interface is similar to that of true brain implants.

Multiple projects have demonstrated success at recording from the brains of animals for long periods of time. As early as 1976, researchers at the

rhesus monkey motor cortexes using immovable "hatpin" electrodes,[6]
including recording from single neurons for over 30 days, and consistent recordings for greater than three years from the best electrodes.

The "hatpin" electrodes were made of pure iridium and insulated with parylene, materials that are currently used in the cyberkinetics implementation of the Utah array.[7] These same electrodes, or derivations thereof using the same biocompatible electrode materials, are currently used in visual prosthetics laboratories,[8] laboratories studying the neural basis of learning,[9] and motor prosthetics approaches other than the cyberkinetics probes.[10]

Schematic of the "Utah" Electrode Array

Other laboratory groups produce their own implants to provide unique capabilities not available from the commercial products.[11][12][13][14]

Breakthroughs include: studies of the process of functional brain re-wiring throughout the learning of a sensory discrimination,

Braingate
.

Much research is also being done on the

surface chemistry of neural implants
in effort to design products which minimize all negative effects that an active implant can have on the brain, and that the body can have on the function of the implant.

Another type of neural implant that is being experimented on is

prosthetic neuronal memory silicon chips
, which imitate the signal processing done by functioning neurons that allows peoples' brains to create long-term memories.

For implants, potentially including brain implants, all-organic devices could be advantageous because they could be

biocompatible.[21] If organic neuromorphic devices reach that point, "implants could allow humans to control powered exoskeletons" for example.[21] Genetically modified neurons may enable connecting external components – such as prosthetic limbs – to nerves.[22] There also is research of potentially implantable[23] physical artificial neurons
.

There is research of potential implants for drug delivery to the brain.[24][25]

In 2016, scientists at the

University of Illinois at Urbana–Champaign announced development of tiny brain sensors for use postoperative monitoring, which melt away when they are no longer needed.[26]

In 2020, scientists out of the

Stentrode, a device implanted via the jugular vein, without the need for open brain surgery. The technology was shown to enable two patients to control a computer using thought alone. It may ultimately help diagnose and treat a range of brain pathologies, such as epilepsy and Parkinson's disease.[27] In 2023, researchers reported no serious adverse events during the first year in all four patients who used the device to operate a computer.[28][29]

Military

sharks. The shark's unique senses would then be exploited to provide data feedback in relation to enemy ship movement or underwater explosives.[31]

In 2006, researchers at Cornell University invented

moths with integrated electronics in their thorax, were demonstrated by the same researchers.[35][36] The initial success of the techniques has resulted in increased research and the creation of a program called Hybrid-Insect-MEMS, HI-MEMS. Its goal, according to DARPA's Microsystems Technology Office, is to develop "tightly coupled machine-insect interfaces by placing micro-mechanical systems inside the insects during the early stages of metamorphosis".[37]

The use of neural implants has recently been attempted, with success, on cockroaches. Surgically applied electrodes were put on the insect, which were remotely controlled by a human. The results, although sometimes different, basically showed that the cockroach could be controlled by the impulses it received through the electrodes. DARPA is now funding this research because of its obvious beneficial applications to the military and other areas[38]

In 2009 at the

remote controlled beetle", funded by the DARPA HI-MEMS Program.[40] This was followed later that year by the demonstration of wireless control of a "lift-assisted" moth-cyborg.[41]

Eventually researchers plan to develop HI-MEMS for dragonflies, bees, rats and pigeons.

cybernetic bug to be considered a success, it must fly 100 metres (330 ft) from a starting point, guided via computer into a controlled landing within 5 metres (16 ft) of a specific end point. Once landed, the cybernetic bug must remain in place.[42]

In 2012, DARPA provided seed funding

Dr. Thomas Oxley, a neurointerventionist at Mount Sinai Hospital in New York City, for a technology that became known as Stentrode. Oxley's group in Australia was the only non-US-based funded by DARPA as part of the Reliable Neural Interface Technology (RE-NET) program.[45] This technology is the first to attempt to provide neural implants through a minimally invasive surgical procedure that does not require cutting into the skull. That is, an electrode array built onto a self-expanding stent, implanted into the brain via cerebral angiography. This pathway can provide safe, easy access and capture a strong signal for a number of indications beyond addressing paralysis, and is currently in clinical trials[46]
in patients with severe paralysis seeking to regain the ability to communicate.

In 2015 it was reported that scientists from the Perception and Recognition Neuro-technologies Laboratory at the Southern Federal University in Rostov-on-Don suggested using rats with microchips planted in their brains to detect explosive devices.[47][48][49]

In 2016 it was reported that American engineers are developing a system that would transform locusts into "remote controlled explosive detectors" with electrodes in their brains beaming information about dangerous substances back to their operators.[50]

Rehabilitation

depression
. Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit.

Brain implants are also being explored by DARPA as part of the Reliable Neural-Interface Technology (RE-NET) program launched in 2010 to directly address the need for high-performance neural interfaces to control the dexterous functions made possible by DARPA's advanced prosthetic limbs. The goal is to provide high-bandwidth, intuitive control interface for these limbs.

Individuals and companies exploring brain–computer interface include: Elon Musk, Bill Gates, Mark Zuckerberg, Jeff Bezos, Neuralink, CTRL Labs, and Synchron.

Current brain implants are made from a variety of materials such as

carbon fibers (nanotubes), and polycarbonate urethane
. Nearly all implants require open brain surgery, but, in 2019, a company called Synchron was able to successfully implant a brain–computer interface via the blood vessels.

There have been a number of advances in technological spinal cord injury treatment, including the use of implants that provided a “digital bridge” between the brain and the spinal cord. In a study published in May 2023 in the journal Nature, researchers in Switzerland described such implants which allowed a 40-year old man, paralyzed from the hips down for 12 years, to stand, walk and ascend a steep ramp with only the assistance of a walker. More than a year after the implant was inserted, he has retained these abilities and was walking with crutches even when the implant was switched off.[51]

Historical research

In 1870,

brain surgery
.

Prominent research was conducted in the 1950s. Robert G. Heath experimented with mental patients, aiming to influence his subjects' moods through electrical stimulation.[52]

Yale University physiologist

Jose Delgado
demonstrated limited control of animal and human subjects' behaviours using electronic stimulation. He invented the stimoceiver or transdermal stimulator, a device implanted in the brain to transmit electrical impulses that modify basic behaviours such as aggression or sensations of pleasure.

Delgado was later to write a popular book on mind control, called Physical Control of the Mind, where he stated: "the feasibility of remote control of activities in several species of animals has been demonstrated [...] The ultimate objective of this research is to provide an understanding of the mechanisms involved in the directional control of animals and to provide practical systems suitable for human application."

In the 1950s, the CIA also funded research into

MKULTRA. Perhaps because he received funding for some research through the US Office of Naval Research
, it has been suggested (but not proven) that Delgado also received backing through the CIA. He denied this claim in a 2005 article in Scientific American describing it only as a speculation by conspiracy-theorists. He stated that his research was only progressively scientifically motivated to understand how the brain works.

Current research is focused on enabling paralyzed patients to move external devices through thought as well as facilitating thought-to-text capability in this population.

In 2012, a landmark study in Nature, led by pioneer Leigh Hochberg, MD, PhD, demonstrated that two people with tetraplegia were able to control robotic arms through thought when connected to the BrainGate neural interface system.[53] The two participants were able to reach for and grasp objects in three-dimensional space, and one participant used the system to serve herself coffee for the first time since becoming paralyzed nearly 15 years prior.

In October 2020, two patients were able to wirelessly control a Surface Book 2 running Windows 10 to text, email, shop and bank using direct thought through the Stentrode brain computer interface.[54] This was the first time a brain–computer interface was implanted via the patient's blood vessels, eliminating the need for open-brain surgery.

Concerns and ethical considerations

Ethical questions raised include who are good candidates to receive neural implants and what are good and bad uses of neural implants. Whilst deep brain stimulation is increasingly becoming routine for patients with Parkinson's disease, there may be some behavioural side effects. Reports in the literature describe the possibility of apathy, hallucinations, compulsive gambling, hypersexuality, cognitive dysfunction, and depression. However, these may be temporary and related to correct placement and calibration of the stimulator and so are potentially reversible.[55]

Some

cyborgs). It is also expected that all research will comply with the Declaration of Helsinki
. Yet further, the usual legal duties apply such as information to the person wearing implants and that the implants are voluntary, with (very) few exceptions.

Other concerns involve vulnerabilities of neural implants to cybercrime or intrusive surveillance as neural implants could be hacked, misused, or misdesigned.[56]

Sadja states that "one's private thoughts are important to protect" and does not consider it a good idea to just charge the government or any company with protecting them. Walter Glannon, a neuroethicist of the University of Calgary notes that "there is a risk of the microchips being hacked by third parties" and that "this could interfere with the user's intention to perform actions, violate privacy by extracting information from the chip".[57]

It brings up the need for enforceable legislation to protect the human rights and basic civil liberties of humans when it is possible and probable for misuse and unwilling implantation of mind control devices and punishment devices, producing electrical shocks to the brain in non-consenting, unwilling, unwitting targets of personal and political enemies of influential people of power without a care for others, such as sociopathic psychopaths with military ties and high security clearances whether their enemies be domestic or foreign. It needs to be on the books as a crime with significant, undeniable enforceable punishments to implant a device into a person’s blood vessels without the person’s consent, willingness, and legal documentation for appropriate medical history needs for a relevant device that affects the brain and can be implanted in a person’s blood vessel after rendering them unconscious and administering substances to wipe their memory for the time before, during, and after the non-consensual illegal implantation of all relevant, appropriate devices.

In fiction and philosophy

Brain implants are now part of modern culture but there were early philosophical references of relevance as far back as René Descartes.

In his 1641 Meditations, Descartes argued that it would be impossible to tell if all one's apparently real experiences were in fact being produced by an evil demon intent on deception. A modern twist on Descartes' argument is provided by the "brain in a vat" thought experiment, which imagines a brain, sustained apart from its body in a vat of nutrients, and hooked up to a computer which is capable of stimulating it in such a way as to produce the illusion that everything is normal.[58]

Popular science fiction discussing brain implants and

mind control became widespread in the 20th century, often with a dystopian outlook. Literature in the 1970s delved into the topic, including The Terminal Man by Michael Crichton, where a man with brain damage receives an experimental surgical brain implant designed to prevent seizures, which he abuses by triggering for pleasure. Another example is Larry Niven's science fiction writing of wire-heads in his "Known Space
" stories.

A somewhat more positive view of brain implants used to communicate with a computer as a form of

.

Fear that the technology will be misused by the government and military is an early theme. In the 1981 BBC serial The Nightmare Man the pilot of a high-tech mini submarine is linked to his craft via a brain implant but becomes a savage killer after ripping out the implant.

Perhaps the most influential novel exploring the world of brain implants was William Gibson's 1984 novel Neuromancer. This was the first novel in a genre that came to be known as "cyberpunk". It follows a computer hacker through a world where mercenaries are augmented with brain implants to enhance strength, vision, memory, etc. Gibson coins the term "matrix" and introduces the concept of "jacking in" with head electrodes or direct implants. He also explores possible entertainment applications of brain implants such as the "simstim" (simulated stimulation) which is a device used to record and playback experiences.

Gibson's work led to an explosion in popular culture references to brain implants. Its influences are felt, for example, in the 1989 roleplaying game

The Matrix Trilogy
.

Pulp fiction with implants or brain implants include the novel series Typers, film Spider-Man 2, the TV series Earth: Final Conflict, and numerous computer/video games.

  • The Gap Cycle (The Gap into): In Stephen R. Donaldson's series of novels, the use (and misuse) of "zone implant" technology is key to several plotlines.
  • Ghost in the Shell anime and manga franchise: Cyberbrain neural augmentation technology is the focus. Implants of powerful computers provide vastly increased memory capacity, total recall, as well as the ability to view his or her own memories on an external viewing device. Users can also initiate a telepathic conversation with other cyberbrain users, the downsides being cyberbrain hacking, malicious memory alteration, and the deliberate distortion of subjective reality and experience.
  • In
    feudal-like society is built by a private company due to riots around Los Angeles. Its systems are run by MILLIE, an advanced computer system, with some high-level executives being able to communicate directly with it and given omniscience of the arcology's workings via expensive implants in their brains.[59]

Film

  • Brainstorm (1983): The military tries to take control over a new technology that can record and transfer thoughts, feelings, and sensations.
  • RoboCop
    (1987) Science fiction action film. Police officer Alex Murphy is murdered and revived as a superhuman cyborg law enforcer.
  • Johnny Mnemonic (1995): The main character acts as a "mnemonic courier" by way of a storage implant in his brain, allowing him to carry sensitive information undetected between parties.
  • The Manchurian Candidate (2004): For a means of mind control, the presidential hopeful Raymond Shaw unknowingly has a chip implanted in his head by Manchurian Global, a fictional geopolitical organization aimed at making parts of the government sleeper cells, or puppets for their monetary advancement.
  • Hardwired (2009): A corporation attempting to bring marketing to the next level implants a chip into main character's brain.
  • Terminator Salvation (2009): A character named Marcus Wright discovers he is a Cyborg and must choose to fight for humans or an evil Artificial intelligence.

Television

  • The Happiness Cage (1972) A German scientist works on a way of quelling overly aggressive soldiers by developing implants that directly stimulate the pleasure centers of the brain. Also known as The Mind Snatchers.
  • Six Million Dollar Man (1974 to 1978) Steve Austin has an accident and is rebuilt as a cyborg
    .
  • The Bionic Woman (1976 to 1978) Jaime Sommers has an accident and is rebuilt as a cyborg.
  • Olag Gan
    , a character, has a brain implant which is supposed to prevent future aggression after being convicted of killing an officer from the oppressive Federation.
  • Dark Angel
    : The notorious Red Series use neuro-implants pushed into their brain stem at the base of their skull to amp them up and hyper-adrenalize them and make them almost unstoppable. Unfortunately the effects of the implant burn out their system after six months to a year and kill them.
  • The X-Files (episode:Duane Barry, relevant to the overreaching mytharc of the series.): FBI Agent Dana Scully discovers an implant set under the skin at the back of her neck which can read her every thought and change memory through electrical signals that alter the brain chemistry.
  • Borg collective
    are equipped with brain implants which connect them to the Borg collective consciousness.
  • Asuran
    interface with humans by inserting their hand into the brain of humans.
  • Stargate SG-1 (season 7)
    . Episode #705. Title "Revisions". A computer network linked to all the brains of the inhabitants. The A.I. in the interface has the ability to erase and rewrite history and does so.
  • Fringe: The Observers use a needle like, self-guided implant which allows them to read the minds of others at the expense of emotion. The implant also allows for short range teleportation and increases intelligence.
  • Person of Interest, Season 4. Episode 81 or 13. Title "M.I.A" "One of many innocent people who Samaritan operatives are experimenting on with neural implants."
  • Brain implants appear in several episodes of
    "Awakening", season three, episode 10, a neurologically impaired
    woman receives a brain implant to help her become more like a typical human.
  • Black Mirror, a British science fiction television anthology series, has several episodes in which characters have implants on their head or in their brain or eyes, providing video recording and playback, augmented reality, and communication.
  • Earth: Final Conflict, in season 1, episode 12, named "Sandoval's Run", the character named Sandoval experiences the breakdown of his brain implant.
  • Earth: Final Conflict, in season 4, episode 12, named "The Summit", the character named Liam is implanted with a neural surveillance device.

Video games

  • In the video games PlanetSide, PlanetSide 2 and Chrome, players can use implants to improve their aim, run faster, and see better, along with other enhancements.
  • The Deus Ex video game series addresses the nature and impact of human enhancement with regard to a wide variety of prosthesis and brain implants. Deus Ex: Human Revolution, set in 2027, details the impact on society of human augmentation and the controversy it could generate. Several characters in the game have implanted neurochips to aid their professions (or their whims). Examples are of a helicopter pilot with implanted chips to better pilot her aircraft and analyse flight paths, velocity and spatial awareness, a CEO getting an artificial arm to throw a baseball better, as well as a hacker with a brain–computer interface that allows direct access to computer networks and also to act as a 'human proxy' to allow an individual in a remote location to control his actions.
The game raises the question of the downsides of this kind of augmentation as those who cannot afford the enhancements (or object to getting them) rapidly find themselves at a serious disadvantage against people with artificial enhancement of their abilities. The spectre of being forced to have mechanical or electronic enhancements just to get a job is explored as well. The storyline addresses the effect of implant rejection by use of the fictional drug 'Neuropozyne' which breaks down glial tissue and is also fiercely addictive, leaving people who have augmentations little choice but to continue buying the drug from a single biotech corporation who controls the price of it. Without the drug augmented people experience rejection of implants (along with ensuing loss of implant functionality), crippling pain, and possible death.
  • In the video game AI: The Somnium Files, a direct neural interface is used to invasively interface the thoughts and dreams of two individuals to the extent that one person could forcibly extract information from another person's brain. Although the ethics of it are not discussed much, the significant concerns presented by this sort of technology, such as blending of the minds of connected individuals or trading thereof, and forced invasive interfacing are brought up and form part of the core narrative.
  • "Cyberpunk 2077," developed by CD Projekt Red, serves as a notable portrayal of advanced neuralware technology within the cyberpunk genre. In the game, neuralware represents a distinct departure from conventional brain implants by ingeniously connecting to the spinal cord instead of directly interfacing with the brain. This unique approach is grounded in the understanding that the spine maintains a direct correlation with the brain, mitigating potential damage while still facilitating seamless neural integration. Furthermore, the game features neural implants designed to interface directly with the neck, providing users with unparalleled capabilities. These cutting-edge implants enable individuals to achieve extraordinary feats, such as mastering specific skills like combat techniques or refining practices like culinary arts. Additionally, users can harness the power of neural connectivity to remotely manipulate and infiltrate the implants of others, showcasing the multifaceted applications of neuralware in the cyberpunk narrative. As a representation of speculative fiction, "Cyberpunk 2077" offers an intriguing exploration of the potential advancements in neuralware technology, pushing the boundaries of imagination while weaving a narrative that underscores the transformative impact of such innovations on individual capabilities and societal dynamics.

See also

References

  1. PMID 28082858
    .
  2. ^ "Implantable Device that Blocks Brain Signals Shows Promise in Obesity". Medscape. Retrieved 2013-08-25.
  3. S2CID 19236108
    .
  4. ^ Mahoney, Patrick (June 21, 2007). "Wireless is getting under our skin". Machine Design. Archived from the original on 2008-06-04. Retrieved 2011-08-14.
  5. ^ Robitzski, Dan (8 April 2019). "This Neural Implant Accesses Your Brain Through the Jugular Vein". Neoscope. Futurism. Retrieved 24 November 2019.
  6. S2CID 35740773
    .
  7. ^ "Cyberkinetics Microelectrode Arrays" (PDF). Archived from the original on March 24, 2006. Retrieved October 25, 2006.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  8. PMID 14616519
    .
  9. .
  10. ^ "Neuroscientists Demonstrate New Way to Control Prosthetic Device with Brain Signals" (Press release). Caltech. July 8, 2004. Archived from the original on July 19, 2011. Retrieved February 26, 2011.
  11. ^ "Laboratory for Integrative Neural Systems | RIKEN". Riken.jp. Archived from the original on 2011-07-27. Retrieved 2011-08-14.
  12. ^ "Blake Laboratory: Neural basis of behavior". Mcg.edu. 2007-08-16. Archived from the original on 2010-05-28. Retrieved 2011-08-14.
  13. ^ "Robert H. Wurtz, Ph.D. [NEI Laboratories]". Nei.nih.gov. Archived from the original on 2011-07-27. Retrieved 2011-08-14.
  14. ^ "Brain Research Institute". Faculty.bri.ucla.edu. Archived from the original on 2011-10-07. Retrieved 2011-08-14.
  15. ^ "Making the connection between a sound and a reward changes brain and behavior". Physorg.com. 2006-10-19. Retrieved 2008-04-25.
  16. ^ Chapin, John K. "Robot arm controlled using command signals recorded directly from brain neurons". SUNY Downstate Medical Center. Archived from the original on 2019-04-11. Retrieved 2008-04-25.
  17. ^ Graham-Rowe, Duncan (2003-10-13). "Monkey's brain signals control 'third arm'". New Scientist. Retrieved 2008-04-25.
  18. ^ Mishra, Raja (2004-10-09). "Implant could free power of thought for paralyzed". Boston Globe. Retrieved 2008-04-25.
  19. ^ Talmadoe, Eric (July 2001). "Japan's latest innovation: a remote-control roach". Associated Press. Retrieved 2008-04-25.
  20. PMID 14568806
    .
  21. ^ a b Bolakhe, Saugat. "Lego Robot with an Organic 'Brain' Learns to Navigate a Maze". Scientific American. Retrieved 1 February 2022.
  22. ^ "Genetically modified neurons could help us connect to implants". New Scientist. Retrieved 1 February 2022.
  23. ^ Sample, Ian (3 December 2019). "Bionic neurons could enable implants to restore failing brain circuits". The Guardian. Retrieved 27 February 2023.
  24. PMID 29125063
    .
  25. ^ Neergaard, Lauran (24 January 2018). "Tiny implant opens way to deliver drugs deep into the brain". CTVNews. Retrieved 27 February 2023.
  26. ^ "Tiny electronic implants monitor brain injury, then melt away". University of Illinois at Urbana–Champaign. January 18, 2016.
  27. ^ "Synchron Launches Trial of Stentrode device in Paralysis patients". Medical Device Network. April 9, 2019. Retrieved November 24, 2019.
  28. ^ Lanese, Nicoletta (12 January 2023). "New 'thought-controlled' device reads brain activity through the jugular". livescience.com. Archived from the original on 16 February 2023. Retrieved 16 February 2023.
  29. S2CID 255545643
    .
  30. ^ Military seeks to develop 'insect cyborgs'. Washington Times (13 March 2006). Retrieved on 29 August 2011.
  31. ^ Military Plans Cyborg Sharks. LiveScience (7 March 2006). Retrieved on 29 August 2011.
  32. ^ Lal A, Ewer J, Paul A, Bozkurt A, "Surgically Implanted Micro-platforms and Microsystems in Arthropods and Methods Based Thereon", US Patent Application # US20100025527, Filed on 12/11/2007.
  33. ^ Paul A., Bozkurt A., Ewer J., Blossey B., Lal A. (2006) Surgically Implanted Micro-Platforms in Manduca-Sexta, 2006 Solid State Sensor and Actuator Workshop, Hilton Head Island, June 2006, pp. 209–11.
  34. ^ Judy, Jack. "Hybrid Insect MEMS (HI-MEMS)". DARPA Microsystems Technology Office. Archived from the original on 10 February 2011. Retrieved 2013-04-09.
  35. ^ Anthes, E. (17 February 2013). "The race to create 'insect cyborgs'". The Guardian. London. Retrieved 23 February 2013.
  36. ^ Ornes, Stephen. "The Pentagon's Beetle Borgs." Discover 30.5 (2009): 14. Academic Search Complete. EBSCO. Web. 1 Mar. 2010.
  37. ISSN 1059-1028
    . Retrieved 2019-05-05.
  38. ^ Bozkurt A, Lal A, Gilmour R. (2009) Radio Control of Insects for Biobotic Domestication. 4th International Conference of the IEEE Neural Engineering (NER'09), Antalya, Turkey.
  39. ^ a b Guizzo, Eric. "Moth Pupa + MEMS Chip = Remote Controlled Cyborg Insect." Automan. IEEE Spectrum, 17 Feb 2009. Web. 1 Mar 2010.
  40. ^ Judy, Jack. "Hybrid Insect MEMS (HI-MEMS)". DARPA Microsystems Technology Office. Archived from the original on 10 February 2011. Retrieved 2013-04-09. The intimate control of insects with embedded microsystems will enable insect cyborgs, which could carry one or more sensors, such as a microphone or a gas sensor, to relay back information gathered from the target destination.
  41. ^ "Minimally Invasive "Stentrode" Shows Potential as Neural Interface for Brain". www.darpa.mil. DARPA. February 8, 2016. Retrieved November 24, 2019.
  42. ^ "Reliable Neural-Interface Technology (RE-NET)". DARPA. Retrieved November 24, 2019.
  43. ^ "STENTRODE First in Human Early Feasibility Study (SWITCH)". ClinicalTrials.gov. April 4, 2019. Retrieved November 24, 2019.
  44. ^ "Aufrüstung für den Krieg 4.0: Heer der Hacker im Dienst der Cyber-Abwehr" (in German). CHIP Online. Retrieved 9 April 2017.
  45. ^ Arkhangelskaya, Svetlana (21 December 2015). "Cyborg rats will take on drug dealers and terrorists". Russia Beyond The Headlines. Retrieved 9 April 2017.
  46. ^ Adams, Sam (4 January 2016). "Bomb-detecting RATS could replace sniffer dogs in battle against terrorists". Mirror. Retrieved 9 April 2017.
  47. ^ Crilly, Rob (2016-07-05). "Engineers develop cyborg locusts to sniff out explosives". The Telegraph. Retrieved 9 April 2017.
  48. ^ Whang, Oliver (24 May 2023). "Brain Implants Allow Paralyzed Man to Walk Using His Thoughts". The New York Times. Archived from the original on 2023-07-26.
  49. .
  50. ^ Orenstein, David. "People with paralysis control robotic arms using brain–computer interface". Brown University. Retrieved 18 January 2021.
  51. PMID 33115813
    . Retrieved 18 January 2021.
  52. .
  53. ^ "Science and Technology Law: Neural Implants and Their Legal Implications | Solo, Small Firm and General Practice Division". www.americanbar.org. Retrieved 2017-02-27.
  54. ^ Solon, Olivia (15 February 2017). "Elon Musk says humans must become cyborgs to stay relevant. Is he right?". The Guardian. Retrieved 9 April 2017.
  55. .
  56. . Retrieved 16 February 2016.

Further reading

External links