V-1 flying bomb
V-1 flying bomb Fieseler Fi 103 Flakzielgerät 76 (FZG-76) | |
---|---|
Argus As 109-014 Pulsejet | |
Operational range | 250 km (160 mi)[2] |
Maximum speed | 640 km/h (400 mph) flying between 600 and 900 m (2,000 and 3,000 ft) |
Guidance system | Gyrocompass based autopilot |
The V-1 flying bomb (
The V-1 was the first of the Vergeltungswaffen (
The Wehrmacht first launched the V-1s against London on 13 June 1944, one week after (and prompted by) Operation Overlord the Allied landings in France.[6] At times more than one hundred V-1s a day were fired at south-east England, 9,521 in total, decreasing in number as sites were overrun until October 1944, when the last V-1 site in range of Britain was overrun by Allied forces. After this, the Germans directed V-1s at the port of Antwerp and at other targets in Belgium, launching another 2,448 V-1s. The attacks stopped only a month before the war in Europe ended, when the last launch site in the Low Countries was overrun on 29 March 1945.
As part of
In 1944 a number of tests of this weapon were apparently conducted in Tornio, Finland. On one occasion, several Finnish soldiers saw a German plane launch what they described as a bomb shaped like a small, winged aircraft. The flight and impact of another prototype was seen by Finnish frontline soldiers; they noted that its engine stopped suddenly, causing the V-1 to descend sharply, and explode on impact, leaving a crater 20–30 metres (66–98 ft) wide. These V-1s became known to Finnish soldiers as "flying torpedoes".[8]
Design and development
In 1935
Lusser produced a preliminary design in April 1942, P35 Erfurt, which used
The V-1 was named by Das Reich journalist Hans Schwarz Van Berkl in June 1944 with Hitler's approval.[14]
Description

The V-1 was designed under the codename Kirschkern (cherry stone)
Power plant
The Argus
Beginning in January 1941, the V-1's pulsejet engine was also tested on a variety of craft, including automobiles
Guidance system

The V-1
The magnetic compass was located near the front of the V-1, within a wooden sphere. Shortly before launch, the V-1 was suspended inside the Compass Swinging Building (Richthaus). There the compass was corrected for
An odometer driven by a
Initially, V-1s landed within a circle 31 km (19 mi) in diameter, but by the end of the war, accuracy had been improved to about 11 km (7 mi), which was comparable to the V-2 rocket.[35]
Warhead
The warhead consisted of 850 kg (1,870 lb) of Amatol, 52A+ high-grade, blast-effective explosive with three fuses. An electrical fuse could be triggered by nose or belly impact. Another fuse was a slow-acting mechanical fuse allowing deeper penetration into the ground, regardless of the altitude. The third fuse was a delayed action fuse, set to go off two hours after launch.[36][37]
The purpose of the third fuse was to avoid the risk of this secret weapon being examined by the British. Its time delay was too short to be a useful booby trap but was instead meant to destroy the weapon if a soft landing had not triggered the impact fuses. These fusing systems were very reliable, and almost no dud V-1s were recovered.[38][39]
Walter catapult

Ground-launched V-1s were propelled up an inclined launch ramp by an apparatus known as a Dampferzeuger ("steam generator"), in which steam was generated when hydrogen peroxide (T-Stoff) was mixed with sodium permanganate (Z-Stoff).[40][41] Designed by Hellmuth Walter Kommanditgesellschaft, the WR 2.3 Schlitzrohrschleuder consisted of a small gas generator trailer, where the T-Stoff and Z-Stoff combined, generating high-pressure steam that was fed into a tube within the launch rail box. A piston in the tube, connected underneath the missile, was propelled forward by the steam. It is a common misconception that the steam launch was to allow the engine to start running but the real reason was that the Argus had insufficient power to propel the V1 to a speed above its extremely high stall speed. The launch rail was 49 m (160 ft) long, consisting of eight modular sections, each 6 m (20 ft) long, and a muzzle brake. Production of the Walter catapult began in January 1944.[42][43]

The Walter catapult accelerated the V-1 to a launch speed of 320 km/h (200 mph), well above the needed minimum operational speed of 240 km/h (150 mph). The V-1 made British landfall at 550 km/h (340 mph), but accelerated to 640 km/h (400 mph) by the time it reached London, as its 570 L (150 US gal) of fuel burned off.[12]
On 18 June 1943 Hermann Göring decided on launching the V-1, using the Walter catapult, in both large launch bunkers, called Wasserwerk, and lighter installations, called the Stellungsystem. The Wasserwerk bunker measured 215 m (705 ft) long, 36 m (118 ft) wide, and 10 m (33 ft) high. Four were initially to be built: Wasserwerk Desvres, Wasserwerk St. Pol, Wasserwerk Valognes, and Wasserwerk Cherbourg. Stellungsystem-I was to be operated by Flak Regiment 155(W), with 4 launch battalions, each having 4 launchers, and located in the Pas-de-Calais region. Stellungsystem-II, with 32 sites, was to act as a reserve unit. Stellungsystem-I and II had nine batteries manned by February 1944. Stellungsystem-III, operated by FR 255(W), was to be organized in the spring of 1944, and located between Rouen and Caen. The Stellungsystem locations included distinctive catapult walls pointed towards London, several J-shaped stowage buildings referred to as "ski" buildings as on aerial reconnaissance photographs the buildings looked like a ski on its side, and a compass correction building which was constructed without ferrous metal. In the spring of 1944, Oberst Schmalschläger had developed a more simplified launching site, called Einsatz Stellungen. Less conspicuous, 80 launch sites and 16 support sites were located from Calais to Normandy. Each site took only two weeks to construct, using 40 men, and the Walter catapult only took 7–8 days to erect, when the time was ready to make it operational.[42]
Once near the launch ramp, the wing spar and wings were attached and the missile was slid off the loading trolley, Zubringerwagen, onto the launch ramp. The ramp catapult was powered by the Dampferzeuger trolley. The pulse-jet engine was started by the Anlassgerät, which provided compressed air for the engine intake, and electrical connection to the engine
Operation Eisbär

Mass production of the FZG-76 did not start until the spring of 1944, and FR 155(W) was not equipped until late May 1944. Operation Eisbär, the missile attacks on London, commenced on 12 June. However, the four launch battalions could only operate from the Pas-de-Calais area, amounting to only 72 launchers. They had been supplied with missiles, Walter catapults, fuel, and other associated equipment since
Damage was widespread and
Operation and effectiveness

The first complete V-1 airframe was delivered on 30 August 1942,[15] and after the first complete As.109-014 was delivered in September,[15] the first glide test flight was on 28 October 1942 at Peenemünde, from under a Focke-Wulf Fw 200.[20] The first powered trial was on 10 December, launched from beneath an He 111.[15]
The LXV Armeekorps z.b.V. ("65th Army Corps for special deployment) formed during the last days of November 1943 in France commanded by General der Artillerie z.V. Erich Heinemann was responsible for the operational use of V-1.[48]

The conventional launch sites could theoretically launch about 15 V-1s per day, but this rate was difficult to achieve on a consistent basis; the maximum rate achieved was 18. Overall, only about 25% of the V-1s hit their targets, the majority being lost because of a combination of defensive measures, mechanical unreliability or guidance errors. With the capture or destruction of the launch facilities used to attack England, the V-1s were employed in attacks against strategic points in Belgium, primarily the port of Antwerp.[49]
Launches against Britain were met by a variety of countermeasures, including barrage balloons and aircraft such as the Hawker Tempest and newly introduced jet Gloster Meteor. These measures were so successful that by August 1944 about 80% of V-1s were being destroyed[50] The Meteors suffered from frequent cannon failures, and accounted for only 13 V-1s destroyed.[51] In all, about 1,000 V-1s were destroyed by aircraft.[51]
The intended operational altitude was originally set at 2,750 m (9,000 ft), but repeated failures of a barometric fuel-pressure regulator led to the operational height being halved in May 1944, bringing V-1s into range of the

The trial versions of the V-1 were air-launched. Most operational V-1s were launched from static sites on land, but from July 1944 to January 1945, the Luftwaffe launched approximately 1,176 from modified Heinkel He 111 H-22s of the Luftwaffe's Kampfgeschwader 3 (3rd Bomber Wing, the so-called "Blitz Wing") flying over the North Sea. Apart from the obvious motive of permitting the bombardment campaign to continue after static ground sites on the French coast were lost, air launching gave the Luftwaffe the opportunity to outflank the increasingly effective ground and air defences put up by the British against the missile. To minimise the associated risks (primarily radar detection), the aircrews developed a tactic called "lo-hi-lo": the He 111s would, upon leaving their airbases and crossing the coast, descend to an exceptionally low altitude. When the launch point was neared, the bombers would swiftly ascend, fire their V-1s, and then rapidly descend again to the previous "wave-top" level for the return flight. Research after the war estimated a 40% failure rate of air-launched V-1s, and the He 111s used in this role were vulnerable to night-fighter attack, as the launch lit up the area around the aircraft for several seconds. The combat potential of air-launched V-1s dwindled during 1944 at about the same rate as that of the ground-launched missiles, as the British gradually took the measure of the weapon and developed increasingly effective defence tactics.[citation needed]
Experimental, piloted, and long-range variants
Piloted variant

Late in the war, several air-launched piloted V-1s, known as ramp.
It had the appearance of a standard V1 with the addition of cockpit, ailerons, landing skids and flight instruments. The pilot would have been airlifted by either
Three different versions of the piloted FZG-76 were produced. The Reichenburg I was a one or two-seat unpowered glider intended for use as a training glider for pilot training. Reichenburg II was a single-seat FZG-76 fitted with a pulse jet power plant. A skid was fitted for dead stick landing to gain valuable flying experience. Reichenburg III was to be the operational piloted version of the V1, fitted with the amatol warhead in the nose.[52] The front windscreen had 75 mm (3.0 in) thick bulletproof glass for pilot protection. The V1 pilot's kit consisted of a parachute, helmet and life vest. A small case contained two small flares in a waterproof container.[53]
Air launch by Ar 234
F-1 version
One variant of the basic Fi 103 design did see operational use. The progressive loss of French launch sites as 1944 proceeded and the area of territory under German control shrank meant that soon the V-1 would lack the range to hit targets in England. Air launching was one alternative utilised, but the most obvious solution was to extend the missile's range. Thus, the F-1 version developed. The weapon's fuel tank was increased in size, with a corresponding reduction in the capacity of the warhead. Additionally, the nose cones and wings of the F-1 models were made of wood, affording a considerable weight saving. With these modifications, the V-1 could be fired at London and nearby urban centres from prospective ground sites in the Netherlands. Frantic efforts were made to construct a sufficient number of F-1s in order to allow a large-scale bombardment campaign to coincide with the
FZG-76 version
There was also a
Success of operations
Almost 30,000 V-1s were made; by March 1944 they were each produced in 350 hours (including 120 for the autopilot), at a cost of just 4% of a
Intelligence reports
The codename "Flakzielgerät 76"—"
Countermeasures in England
Anti-aircraft guns

The British defence against German long-range weapons was known by the codename
On the first night of sustained bombardment, the anti-aircraft crews around Croydon were jubilant—suddenly they were downing unprecedented numbers of German bombers; most of their targets burst into flames and fell when their engines cut out. There was great disappointment when the truth was announced. Anti-aircraft gunners soon found that such small fast-moving targets were, in fact, very difficult to hit. The cruising altitude of the V-1, between 600 and 900 m (2,000 and 3,000 ft), meant that anti-aircraft guns could not traverse fast enough to hit the missile.[63]
The standard British QF 3.7-inch mobile gun could not cope with the altitude and speed of the V-1. However, the static version of the QF 3.7-inch, designed for a permanent concrete platform, had a faster traverse. The cost and delay of installing new permanent platforms for the guns was found to be unnecessary as a temporary platform devised by the Royal Electrical and Mechanical Engineers and made from railway sleepers and rails was found to be adequate for the static guns, making them considerably easier to re-deploy as the V-1 threat changed.[64][c]
The development of the
These electronic aids arrived in quantity from June 1944, just as the guns reached their firing positions on the coast. Seventeen per cent of all flying bombs entering the coastal "gun belt" were destroyed by guns in their first week on the coast. This rose to 60 per cent by 23 August and 74 per cent in the last week of the month, when on one day 82 per cent were shot down. The rate improved from thousands of shells for every one V-1 destroyed to 100 for each. This mostly ended the V-1 threat.[66] As General Frederick Pile put it in an April 5, 1946 article in the London Times: "It was the proximity fuse which made possible the 100 per cent successes that A.A. Command was obtaining regularly in the early months of last year...American scientists...gave us the final answer to the flying bomb."[67]
Barrage balloons
Eventually about 2,000 barrage balloons were deployed, in the hope that V-1s would be destroyed when they struck the balloons' tethering cables. The leading edges of the V-1's wings were fitted with Kuto cable cutters, and fewer than 300 V-1s are known to have been brought down by barrage balloons.[68][69]
Interceptors
This section needs additional citations for verification. (January 2021) |
The Defence Committee expressed some doubt as to the ability of the Royal Observer Corps to adequately deal with the new threat, but the ROC's Commandant Air Commodore Finlay Crerar assured the committee that the ROC could again rise to the occasion and prove its alertness and flexibility. He oversaw plans for handling the new threat, codenamed by the RAF and ROC as "Operation Totter", which included a proposal whereby ROC posts would fire 'Snowflake' illuminating rocket flares in order to alert RAF fighters to the presence of a V-1.

Observers at the coast post of Dymchurch identified the very first of these weapons and within seconds of their report the anti-aircraft defences were in action. This new weapon gave the ROC much additional work both at posts and operations rooms. Eventually RAF controllers actually took their radio equipment to the two closest ROC operations rooms at Horsham and Maidstone, and vectored fighters direct from the ROC's plotting tables. The critics who had said that the Corps would be unable to handle the fast-flying jet aircraft were answered when these aircraft on their first operation were actually controlled entirely by using ROC information both on the coast and at inland.
The average speed of V-1s was 550 km/h (340 mph) and their average altitude was 1,000 m (3,300 ft) to 1,200 m (3,900 ft). Fighter aircraft required excellent low altitude performance to intercept them and enough firepower to ensure that they were destroyed in the air (ideally, also from a sufficient distance, to avoid being damaged by the strong blast) rather than the V-1 crashing to earth and detonating. Most aircraft were too slow to catch a V-1 unless they had a height advantage, allowing them to gain speed by diving on their target.
When V-1 attacks began in mid-June 1944, the only aircraft with the low-altitude speed to be effective against it was the Hawker Tempest. Fewer than 30 Tempests were available. They were assigned to No. 150 Wing RAF. Early attempts to intercept and destroy V-1s often failed, but improved techniques soon emerged. These included using the airflow over an interceptor's wing to raise one wing of the V-1, by sliding the wingtip to within 6 in (15 cm) of the lower surface of the V-1's wing. If properly executed, this manoeuvre would tip the V-1's wing up, over-riding the gyro and sending the V-1 into an out-of-control dive. At least sixteen V-1s were destroyed this way (the first by a P-51 piloted by Major R. E. Turner of 356th Fighter Squadron on 18 June).[70]
The Tempest fleet was built up to over 100 aircraft by September, and during the short summer nights the Tempests shared defensive duty with twin-engined
The anti-V-1 sorties by fighters were known as "Diver patrols" (after "Diver", the codename used by the Royal Observer Corps for V-1 sightings). Attacking a V-1 was dangerous: machine guns had little effect on the V-1's sheet steel structure, and if a cannon shell detonated the warhead, the explosion could destroy the attacker.

In daylight, V-1 chases were chaotic and often unsuccessful until a special defence zone was declared between London and the coast, in which only the fastest fighters were permitted. The first interception of a V-1 was by F/L J. G. Musgrave with a
The next most successful interceptors were the Mosquito (623 victories),
In late 1944 a radar-equipped
Disposal
The first bomb disposal officer to defuse an unexploded V-1 was John Pilkington Hudson in 1944.[78]
Deception
To adjust and correct settings in the V-1 guidance system, the Germans needed to know where the V-1s were impacting. Therefore,

On 16 June 1944 British double agent Garbo (
While the British decided how to react, Pujol played for time. On 18 June it was decided that the double agents would report the damage caused by V-1s fairly accurately and minimise the effect they had on civilian morale. It was also decided that Pujol should avoid giving the times of impacts and should mostly report on those which occurred in the northwest of London, to give the impression to the Germans that they were overshooting the target area.[80]
While Pujol downplayed the extent of V-1 damage, trouble came from Ostro, an Abwehr agent in Lisbon who pretended to have agents reporting from London. He told the Germans that London had been devastated and had been mostly evacuated as a result of enormous casualties. The Germans could not perform aerial reconnaissance of London and believed his damage reports in preference to Pujol's. They thought that the Allies would make every effort to destroy the V-1 launch sites in France. They also accepted Ostro's impact reports. Due to Ultra, however, the Allies read his messages and adjusted for them.[81]

A certain number of the V-1s fired had been fitted with radio transmitters, which had clearly demonstrated a tendency for the V-1 to fall short. Oberst Max Wachtel, commander of Flak Regiment 155 (W), which was responsible for the V-1 offensive, compared the data gathered by the transmitters with the reports obtained through the double agents. He concluded, when faced with the discrepancy between the two sets of data, that there must be a fault with the radio transmitters, as he had been assured that the agents were completely reliable. It was later calculated that if Wachtel had disregarded the agents' reports and relied on the radio data, he would have made the correct adjustments to the V-1's guidance, and casualties might have increased by 50 per cent or more.[82][83]
The policy of diverting V-1 impacts away from central London was initially controversial. The War Cabinet refused to authorise a measure that would increase casualties in any area, even if it reduced casualties elsewhere by greater amounts. It was thought that
Effect
The use of land-launched V-1s against Great Britain ended on 1 September after which the campaign continued using air-launched missiles.[85] In total, 10,492 V-1s were launched against Britain, with a nominal aiming point of Tower Bridge.[86] 7,500 incoming missiles were observed by the British defenders of which 1,847 were downed by fighters, 1,878 were destroyed by anti aircraft fire and 232 struck barrage balloons. 2,419 V-1s reached the London civil defence region, inflicting 6,184 fatalities and 17,981 serious injuries.[87] On the 28 March the last V-1 reached London.[88]
Assessment
Unlike the V-2, the V-1 was a cost-effective weapon for the Germans as it forced the Allies to spend heavily on defensive measures and divert bombers from other targets. More than 25% of
Blitz | V-1 | |
---|---|---|
1. Cost to Germany | ||
Sorties | 90,000 | 8,025 |
Weight of bombs tons | 61,149 | 14,600 |
Fuel consumed tons | 71,700 | 4,681 |
Aircraft lost | 3,075 | 0 |
Personnel lost | 7,690 | 0 |
2. Results | ||
Structures damaged/destroyed | 1,150,000 | 1,127,000 |
Casualties | 92,566 | 22,892 |
Rate casualties/bombs tons | 1.6 | 1.6 |
3. Allied air effort | ||
Sorties | 86,800 | 44,770 |
Aircraft lost | 1,260 | 351 |
Personnel lost | 2,233 | 805 |
The statistics of this report, however, have been the subject of some dispute. The V-1 missiles launched from bombers were often prone to exploding prematurely, occasionally resulting in the loss of the aircraft to which they were attached. The Luftwaffe lost 77 aircraft in 1,200 of these sorties.[90]
Belgian attacks
The attacks on Antwerp and Brussels began in October 1944, with the last V-1 launched against Antwerp on 30 March 1945.[92] The shorter range improved the accuracy of the V-1 which was 10 kilometres (6.2 mi) deviation per 160 kilometres (99 mi) of flight, the flight level was also reduced to around 900 m (3,000 ft).[93] The Port of Antwerp was one of the biggest in the world and was the main entrepot for Alled supplies further progression of Allied armies into Germany, although initially Montgomery had not given high priority to seizure of the Scheldt estuary giving access to the port.[citation needed]
Countermeasures at Antwerp
Both British (
US units deployed
In November attacks began from the north-east and additional batteries were deployed along the new azimuths, including the
Japanese developments
In 1943 an Argus pulsejet engine was sent to Japan by
Post-war
France
After reverse-engineering captured V-1s in 1946, the French began producing copies for use as
Soviet Union
The Soviet Union captured V-1s when they overran the
The Soviets also worked on a piloted attack aircraft based on the Argus pulsejet engine of the V-1, which began as a German project, the Junkers EF 126 Lilli, in the latter stages of the war. The Soviet development of the Lilli ended in 1946 after a crash that killed the test pilot.[103]
United States

The United States reverse-engineered the V-1 in 1944 from salvaged parts recovered in England during June. By 8 September, the first of thirteen complete prototype Republic-Ford JB-2, was assembled at Republic Aviation. The United States JB-2 was different from the German V-1 in only the smallest of dimensions, with only the forward pulsejet support pylon visibly differing in shape from the original German pilotless ordnance design. The wingspan was only 65 mm (2+1⁄2 in) wider and the length was extended less than 0.6 m (2 ft). The difference gave the JB-2 5.64 m2 (60.7 sq ft) of wing area versus 5.1 m2 (55 sq ft) for the V-1.[105]
A navalised version, designated KGW-1, was developed to be launched from LSTs as well as escort carriers (CVEs) and long-range 4-engine reconnaissance aircraft. Waterproof carriers for the KGW-1 were developed for launches of the missile from surfaced submarines. Both the USAAF JB-2 and Navy KGW-1 were put into production and were planned to be used in the Allied invasion of Japan (Operation Downfall). However, the surrender of Japan obviated the need for its use.[105] After the end of the war, the JB-2/KGW-1 played a significant role in the development of more advanced surface-to-surface tactical missile systems such as the MGM-1 Matador and SSM-N-8 Regulus.[106]
Operators
Surviving examples
This section needs additional citations for verification. (January 2021) |
- Australia
- The Australian War Memorial in Canberra, Australia
- Belgium
- The Stampe en Vertongen Museum at Antwerp International Airport has a V-1 on display.[107]

- Canada
- Atlantic Canada Aviation Museum in Halifax, Nova Scotia
- Canadian War Museum, manned version Fieseler Fi 103R Reichenberg, collected[108] by Farley Mowat
- Denmark
- France
- The Grand Bunker Museum in Ouistreham, near Caen and Sword Beach, displays a V-1 flying bomb.
- Blockhaus d'Éperlecques, near Saint-Omer. Although this was intended as a V-2 launch site the museum on the site has a display devoted to the V-1, including a V-1 cruise missile and an entire launch ramp.
- Le Val Ygot at Ardouval, north of Saint-Saëns. Disabled by Allied bombing in December 1943, before completion. Remains of blockhouses, with recreated launch ramp and mock V1.
- Science Museumin London.
- The Overlord Museum in Colleville-sur-Mer, near the Normandy American Cemetery and Memorial and Omaha Beach, displays a French copy of the V-1; actually a CT 10 target drone.
- Tosny Museum, near Les Andelys, displays a restored Fieseler 103 A1, launched on 13 June from Pont-Montauban base and crashed in the mud without exploding after flying 10 km.[109]
- Germany
- Deutsches Museum in Munich
- The Netherlands
- Overloon War Museum in Overloon
- Museum Vliegbasis Deelen in Schaarsbergen
- National Military Museum in Soesterberg has a V1 and a V1 Reichenberg
- New Zealand
- Auckland War Memorial Museum, Auckland
- Museum of Transport and Technology, Auckland[110][111]
- Sweden
- A V-1 in the Arboga Missile museum [112]
- Switzerland
- A restored original V-1 is on display, as well as one of only six worldwide remaining original Reichenberg (Re 4–27), at the Swiss Military Museum in Full
- United Kingdom
- A reproduction V-1 is located at the Eden Camp in North Yorkshire.[113]
- Fi-103 serial number 442795 is on display at the Science Museum, London. It was presented to the museum in 1945 by the War Office.
- A V-1 is on a partial ramp section, at the Imperial War Museum Duxford; the museum also has a partially recreated launch ramp with a mock–up V-1 displayed outside.
- A V-1 is on display with a RAF Museum Hendon, north London
- a V-1 is on display at the other RAF Museum site, Royal Air Force Museum Midlands in Shropshire
- A Fieseler Fi 103R Reichenberg—the piloted version of the V1—is usually on display at Headcorn (Lashenden) Airfield's Air Warfare Museum
- A V-1 is on display with a V-2 in the new Atrium of the Imperial War Museum, London
- The Aeropark at East Midlands Airport also has a V-1 on display.[114]
- A V-1 replica and original launch rail and equipment is on display at the Kent Battle of Britain Museum[115]
- A V-1 is on display at the RAF Manston History Museum[116]
- A V-1 replica is displayed at The Muckleburgh Collection near Weybourne in Norfolk. According to the collection's website, the replica is displayed on a section of the original Peenemunde launch ramp.[117]
- United States

- A V-1 is on display at the US Army Air Defense Artillery Museum, Fort Sill, Oklahoma.
- FZG-76 is on display as a war memorial at the southwest corner of the Putnam County Courthouse in Greencastle, Indiana.[118]
- The Smithsonian's National Air and Space Museum on the National Mall in Washington, D.C.
- A V-1 is on display at the Air Zoo in Portage, Michigan.
- The Cosmosphere in Hutchinson, Kansas has a V-1 display which consists of a post-war "hybrid" of German-machined and American parts. In particular, it has a JB-2 Loon-style forward engine support fairing.
- A V-1 is also located at the Fantasy of Flight aviation museum in Polk City, Florida
- V-1 #121536 is on display at the Pima Air and Space Museum, in Tucson, Arizona.
- A V-1 and Flying Heritage Collectionin Everett, Washington.
- A V-1 is on display at the Military Aviation Museum in Virginia Beach, Virginia.
- A V-1 is on display at the Museum of Flight in Seattle, Washington.[119]
See also
- Aggregat (rocket family)
- Amerika Bomber
- Argus Fernfeuer
- Fieseler Fi 103R Reichenberg – The piloted version of the V-1
- Fritz X
- Henschel Hs 293
- Hewitt-Sperry Automatic Airplane
- Kettering "Bug" Aerial Torpedo
- List of German guided weapons of World War II
- List of jet aircraft of World War II
- List of missiles
- Ohka
- Operation Paperclip
- RAE Larynx
- Republic-Ford JB-2
- SCR-584 radar
- V-1 flying bomb facilities
- V-2 rocket
- V-3 cannon
References
Informational notes
- ^ Vergeltungswaffe "vengeance weapon 1" (Vergeltungs can also be translated as "retribution", "reprisal," or "retaliation"), also Fieseler Fi 103 by the RLM's airframe number 8-103.
- ^ From the low hum resembling that of the insect. It was also referred to as a "robot bomb".[4][5]
- Frederick Pile.
- ^ Squadrons 91, 322 (Dutch) and 610. The top ace was S/L Kynaston of 91 Sqn with 21 destroyed.[74]
Citations
- ^ a b c Zaloga 2005, p. 11.
- ^ a b Werrell 1985, p. 53.
- ^ Christopher 2013, p. 108.
- ^ a b Vanek 1999, p. 81.
- ^ Lloyd & Hall 1997, p. 222.
- ^ Frederick French. "War and peace and the price of cat-fish". Uncle Fred's diaries. Archived from the original on 7 July 2017. Retrieved 16 June 2014.
- ^ American Sub Rescues Airmen. Universal Newsreel. 1944. Retrieved 21 February 2012.
- ^ Tornio 1944 by Osmo Hyvönen page 262, Ilmasotaa Torniossa
- ^ Zaloga 2005, pp. 3–5.
- ^ Zaloga 2005, pp. 5–6.
- ^ Reuter 2000, pp. 56–59.
- ^ a b c Werrell 1985, pp. 41–62.
- ^ Zaloga 2005, p. 7.
- ^ Evans 2008, p. 660.
- ^ a b c d e Zaloga 2005, p. 6.
- ^ Zaloga 2005, pp. 8–9.
- ^ Oliver 2018, pp. 19–24.
- ^ Cooksley 1979, pp. 32–33.
- ^ a b c Guckelhorn & Paul 2004, pp. 12–19.
- ^ a b c Zaloga 2005, p. 5.
- ISBN 978-1-8483-2781-8.
- ^ Zaloga 2005, p. 8.
- ^ Oliver 2018, pp. 19, 24, 28, 89.
- ^ Cooksley 1979, pp. 30–32.
- ^ Oliver 2018, pp. 27–28.
- ^ Cooksley 1979, pp. 29–30.
- ^ a b Levine 1992, pp. 137, 139.
- ^ Oliver 2018, p. 33.
- ^ Cooksley 1979, p. 39.
- ^ Werrell 1985, p. 54.
- ^ "Teil 1: Zelle [Part 1: Airframe]". FZG 76 Geräte-Handbuch [FZG 76 Equipment Handbook] (PDF) (in German). April 1944. pp. 7–8. Archived from the original (PDF) on 11 January 2019.
- ^ German V-1 Leaflet Campaign, Psy Warrior, retrieved 20 October 2010.
- ^ Oliver 2018, p. 27.
- ^ Cooksley 1979, pp. 29, 37.
- ^ Kloeppel, Major Kirk M., The Military Utility of German Rocketry During World War II, Air Command and Staff College, 1997.
- ^ Oliver 2018, pp. 28, 85–86.
- ^ Cooksley 1979, p. 30.
- ^ "The Doodlebug Project". Stampe & Vertongen Museum. Antwerp Airport. Archived from the original on 21 January 2019. Retrieved 27 May 2018.
- ^ "Teil 4: Zünderanlage [Part 4: Ignition system]". FZG 76 Geräte-Handbuch [FZG 76 Equipment Handbook] (PDF) (in German). April 1944. pp. 98–118. Archived from the original (PDF) on 11 January 2019. Retrieved 27 May 2018.
- ^ Werrell 1985, p. [page needed].
- ^ "V1 Light Sites". Atlantic Wall. Retrieved 9 May 2017.
- ^ a b Zaloga 2008, pp. 10, 17–18, 24–39, 42, 47–48.
- ^ Guckelhorn & Paul 2004, pp. 20–23.
- ^ Zaloga 2005, p. 17–18, 20–21.
- ^ Oliver 2018, pp. 84, 87–90.
- ^ Cooksley 1979, pp. 32–35.
- ^ Zaloga 2008, pp. 35, 38–39, 42.
- ^ LXV Armeekorps z.b.V. www.axishistory.com
- ISBN 978-1-904943-39-6.)
{{cite book}}
: CS1 maint: publisher location (link - ^ Christopher 2013, pp. 108–109.
- ^ a b Christopher 2013, p. 109.
- ^ a b c Aeronautical 1966, p. 45.
- ^ Aeronautical 1966, p. 47.
- ^ Oliver, Kingsley. The RAF Regiment at War 1942–1946. Pen & Sword.
- ^ Christopher 2013, p. 179.
- ^ Porsche 109-005 engine drawing.
- ^ Kay 2002, p. 153-155.
- ^ "Deaths and injuries: 1939–45". Home Front. Archived from the original on 18 September 2003.
- ^ V-bommenterreur boven Antwerpen (in German), Verzet, archived from the original on 10 February 2010, retrieved 20 October 2010.
- ^ Impact points of V-1 and V-2 around Antwerp (JPEG) (map), V2 Rocket, retrieved 20 October 2010.
- ^ Aloyse Raths – Unheivolle Jahre für Luxemburg 1940–1945 p. 259-261
- ^ Jones 1978, pp. 523–542.
- ^ Hickman, Kennedy (10 December 2019). "World War II: V-1 Flying Bomb". ThoughtCo.com. Retrieved 11 March 2023.
- ^ Dobinson 2001, p. 436.
- ^ Holmes, Jamie (4 August 2020). "The American Scientists Who Saved London from Nazi Drones". Wired. Retrieved 11 March 2023.
- ^ Dobinson 2001, p. 438.
- ^ Holmes 2020a, p. 360.
- ^ "Barrage Balloons for Low-Level Air Defense". Air & Space Power Journal. Summer 1989. Archived from the original on 2 February 2007. Retrieved 16 April 2007.
- ^ Zaloga 2005, p. 34.
- ^ Thomas 2013, p. [page needed].
- ^ "4-Cannon Tempest Chases Nazi Robot Bomb". Popular Mechanics, February 1945.
- ^ "Plesman, Jan Leendert". TracesOfWar.nl (in Dutch).
- ^ Sharp & Bowyer 1995, p. 179.
- ^ Ultimate Spitfire (pp. 203–204)
- ^ Cooper 1997, p. 8.
- ^ Jackson 2007, p. 217.
- ^ Ross H. Hamilton. June 2003 "The Very First Awacs" Archived 15 January 2020 at the Wayback Machine Ex Air Gunners Association. via Commonwealth Training Plan Museum
- doi:10.1093/ref:odnb/99289 (Subscription or UK public library membershiprequired.)
- ^ Masterman 1972, pp. 252–53.
- ^ Crowdy 2008, pp. 273–74.
- ^ Masterman 1972, p. 254.
- ^ Jones 1978, p. 422.
- ^ Crowdy 2008, p. 280.
- ^ Montagu 1978, pp. 151–58.
- ^ Zaloga 2005, p. 40.
- ^ Atkinson 2013, pp. 107, 110.
- ^ Werrell 2005, pp. 20.
- ^ Zaloga 2005, p. 71.
- ^ a b Irons 2003, p. 199.
- ^ Hutchinson 2003, p. [page needed].
- ^ Mindling & Bolton 2009, pp. 6–31.
- ^ Defense Technical Information Center 1971, p. 31.
- ^ Defense Technical Information Center 1971, p. 9.
- ^ Defense Technical Information Center 1971, p. 34.
- ^ Defense Technical Information Center 1971, p. 36.
- ^ Defense Technical Information Center 1971, p. 40.
- ^ Defense Technical Information Center 1971, p. 45.
- ^ Defense Technical Information Center 1971, p. 51.
- ^ Defense Technical Information Center 1971, p. 53.
- ^ Defense Technical Information Center 1971, p. 68.
- ^ Defense Technical Information Center 1971, p. 54.
- ^ Winter, Frank; Neufeld, Michael J. (August 2000). "Missile, Cruise, V-1 (Fi 103, FZG 76)". National Air and Space Museum. Smithsonian Institution. Retrieved 1 May 2018.
- ^ a b c d Christopher 2013, p. 193.
- ^ Zaloga 2005, p. 80.
- ^ a b Mindling & Bolton 2009, p. [page needed].
- ^ Zaloga 2020, p. 33.
- ^ "Things to see, things to do". Stampe en Vetongen Museum. Retrieved 12 October 2022.
- ^ Canadian War Museum @CanWarMuseum: Now in the #WarMuseum Lobby: a V-1 Flying Bomb – Fi103 R-IV "Reichenberg" collected by #FarleyMowat – 23 May 2014 Twitter
- ^ "V1 arme secrète d'Hitler" [Hitler's Secret Weapon V1]. Tosny Museum (in French). Retrieved 25 July 2020.
- ^ "Motat." lonelyplanet.com. Retrieved 20 October 2010.
- ^ "MOTAT & One Tree Hill". Ball of Dirt.com. Archived from the original on 11 August 2009. Retrieved 20 October 2010.
- ^ "Startsida". Archived from the original on 19 April 2012. Retrieved 14 August 2011.
- ^ "Exhibit of the Week: V1 flying bomb gyroscope, Eden Camp Museum, Malton". The Scarborough News. 29 July 2017. Retrieved 18 October 2017.
- ^ "The Aeropark." eastmidlandsairport.com. Retrieved 20 October 2010.
- ^ "The V-weapons Display". Kent Battle of Britain Museum. Retrieved 4 August 2018.
- ^ "Aircraft and Cockpit Displays". RAF Manston History Museum. Retrieved 14 November 2023.
- ^ "Complete Collection". Muckleburgh Military Collection. Retrieved 29 June 2022.
- ^ The Buzz Bomb; Bronze Plaque next to the memorial
- ^ "The Fieseler Fi 103 (V1) German "Buzz Bomb"". Museum of Flight.
Bibliography
- Aeronautical Staff of Aero Publishers in cooperation with Edward T Maloney (1966). Kamikaze. Fallbrook, California, USA: Aero Publishers.
- ISBN 978-0-349-14048-3.
- Christopher, John (2013), The Race for Hitler's X-Planes, The Mill, Gloucestershire, UK: History Press
- Cooksley, Peter (1979). Flying Bomb, The Story of Hitler's V-Weapons in World War II. New York: Charles Scribner's Sons.
- Cooper, Michael "Mike" (1997), Meteor Age, Doncaster, UK: Mark Turner
- Crowdy, Terence "Terry" (2008), Deceiving Hitler: Double Cross and Deception in World War II, Oxford: Osprey, ISBN 978-1-84603-135-9
- "The defence of Antwerp against the V-1 missile" (PDF). Defense Technical Information Center. 1971. Archived from the original (PDF) on 23 February 2017.
- Dobinson, Colin (2001). AA Command: Britain's Anti-aircraft Defences of World War II. Methuen. ISBN 978-0-413-76540-6.
- Evans, Richard J. (2008), The Third Reich at War, 1939–1945, Penguin, ISBN 978-1-59420-206-3.
- Guckelhorn, Wolfgang; Paul, Detlev (2004). V1-"Eifelschreck", Abschüsse, Abstürze und Einschläge der fliegenden Bombe aus der Eifel und dem Rechtsrheinischen 1944/45. aachen: Helios. ISBN 3-933608-94-5.
- Holmes, Jamie (2020a). 12 Seconds of Silence: How a Team of Inventors, Tinkerers, and Spies Took Down a Nazi Superweapon. Boston: Houghton Mifflin Harcourt. ISBN 978-1-328-46012-7.
- Hutchinson, Robert (2003). Weapons of Mass Destruction. George Weidenfeld & Nicolson. ISBN 0-297-83091-0.
- Irons, Roy (2003), Hitler's Terror Weapons: The Price of Vengeance, New York: Harper Collins, ISBN 978-0-00-711263-0
- Jackson, Robert (2007), Britain's Greatest Aircraft, Barnsley, UK: Pen & Sword, ISBN 978-1-84415-383-1
- ISBN 978-0-241-89746-1
- Kay, Antony (2002), German Jet Engine and Gas Turbine Development 1930-1945, Airlife Publishing Ltd, ISBN 9781840372946
- Levine, Alan J. (1992), The Strategic Bombing of Germany, 1940–1945, Westport, Connecticut: Praeger, ISBN 0-275-94319-4.
- Lloyd, Clement John; Hall, Richard, eds. (1997), Backroom Briefings: John Curtin's War (illus. ed.), National Library Australia, p. 222, ISBN 978-0-642-10688-9
- Masterman, John C. (1972) [1945], The Double-Cross System in the War of 1939 to 1945, London: Avon
- Mindling, George; Bolton, Robert (2009), US Air Force Tactical Missiles, 1949–1969, The Pioneers, Raleigh, NC: Lulu.com, ]
- ISBN 978-0-698-10882-0
- Munson, Kenneth (1978). German Aircraft Of World War 2 in colour. Poole, Dorsett, UK: Blandford Press. ISBN 0-7137-0860-3.
- Oliver, John (2018). The V1, The machine and its men. CreateSpace Independent Publishing Platform. ISBN 978-1-987754-75-9.
- Reuter, C. (2000), The V2 and the German, Russian and American Rocket Program, Missisagua, ON, Canada: German Canadian Heritage Museum, ISBN 978-1-894643-05-4
- Sharp, C. Martin; Bowyer, Michael J. F. (1995), Mosquito, Somerset, UK: Crécy, ISBN 978-0-947554-41-5
- Thomas, Andrew (2013). V1 Flying Bomb Aces. Aircraft of the Aces. Vol. 113. Botley, Oxford: Osprey Publishing. ISBN 978-1-78096-292-4.
- Werrell, Kenneth P. (1985), The Evolution of the Cruise Missile (PDF), Maxwell Air Force Base, AL: Air University Press
- Werrell, Kenneth P. (2005), Archie to SAM, Maxwell Air Force Base, AL: Air University Press
- Vanek, David (1999). Fulfilment: Memoirs of a Criminal Court Judge. Dundurn. p. 81. ISBN 978-1-4597-1502-8.
- Zaloga, Steven (2005). V-1 Flying Bomb 1942–52. Oxford: Osprey Publishing. ISBN 978-1-84176-791-8.
- Zaloga, Steven (2008). German V-Weapon Sites 1943–45. Oxford: Osprey Publishing. ISBN 978-1-84603-247-9.
- Zaloga, Steven (2020). American Guided Missiles of World War II. Osprey Publishing. ISBN 9781472839268.
Further reading
- ISBN 978-1-86105-581-1
- Hellmold, Wilhelm (1991). Die V1: Eine Dokumentation. Augsburg, Germany: Weltbild Verlag GmbH. ISBN 3-89350-352-8.
- Henshall, Philip (2002). Hitler's V-Weapons Sites. United Kingdom: Sutton Publishing. ISBN 0-7509-2607-4.
- Kay, Anthony L. (1977), Buzz Bomb (Monogram Close-Up 4), Boylston, MA: Monogram Aviation Publications, ISBN 978-0-914144-04-5
- King, Benjamin; Kutta, Timothy (1998), Impact: The History of Germany's V-Weapons in World War II, New York: Sarpedon, ISBN 978-1-885119-51-3
- Ramsay, Winston (1990), The Blitz Then & Now, vol. 3, London: Battle of Britain Prints, ISBN 978-0-900913-58-7
- Young, Richard Anthony (1978), The Flying Bomb, Shepperton, UK: Ian Allan, ISBN 978-0-89402-072-8)
External links
- A film clip of FZG 76 – V-1 is available for viewing at the Internet Archive
- V-1 Launch Site
- The V-Weapons, from Marshall Stelzriede's Wartime Story website with June 1944 UK/US news reports on V-1 attacks
- Fi-103/V-1 "Buzz Bomb", from the Luftwaffe Resource Center website, hosted by The Warbirds Resource Group; with 42 photos
- The Lambeth Archives, includes a sound recording of an incoming V-1, circa 1944
- Swedish site (in English) with text and many details of the V-1 cruise missile and its supporting hardware Archived 14 October 2011 at the Wayback Machine