Caspase 3

Source: Wikipedia, the free encyclopedia.
CASP3
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_004346
NM_032991

NM_009810
NM_001284409

RefSeq (protein)

NP_001271338
NP_033940

Location (UCSC)n/aChr 8: 47.07 – 47.09 Mb
PubMed search[2][3]
Wikidata
View/Edit HumanView/Edit Mouse

Caspase-3 is a

lissamphibians, and teleosts
.

The CASP3

proenzymes that undergo proteolytic processing at conserved aspartic residues to produce two subunits, large and small, that dimerize to form the active enzyme. This protein cleaves and activates caspases 6 and 7; and the protein itself is processed and activated by caspases 8, 9, and 10. It is the predominant caspase involved in the cleavage of amyloid-beta 4A precursor protein, which is associated with neuronal death in Alzheimer's disease.[6] Alternative splicing of this gene results in two transcript variants that encode the same protein.[7]

TNF
-R1. Dashed grey lines represent multiple steps
Pathways leading to caspase 3 activation.[8]

Caspase-3 shares many of the typical characteristics common to all currently-known caspases. For example, its active site contains a

zymogens, termed procaspases, which are inactive until a biochemical change causes their activation. Each procaspase has an N-terminal large subunit of about 20 kDa followed by a smaller subunit of about 10 kDa, called p20 and p10, respectively.[12]

Substrate specificity

Under normal circumstances, caspases recognize tetra-peptide sequences on their

substrates and hydrolyze peptide bonds after aspartic acid residues. Caspase 3 and caspase 7 share similar substrate specificity by recognizing tetra-peptide motif Asp-x-x-Asp.[13] The C-terminal Asp is absolutely required while variations at other three positions can be tolerated.[14] Caspase substrate specificity has been widely used in caspase based inhibitor and drug design.[15]

Structure

Caspase-3, in particular, (also known as CPP32/Yama/apopain)

alpha-helices that is unique to caspases.[12][19] When the heterodimers align head-to-tail with each other, an active site is positioned at each end of the molecule formed by residues from both participating subunits, though the necessary Cys-163 and His-121 residues are found on the p17 (larger) subunit.[19]

subunits alt text
The p12 (pink) and p17 (light blue) subunits of caspase-3 with the beta-sheet structures of each in red and blue, respectively; image generated in Pymol from 1rhm.pdb

Mechanism

The catalytic site of caspase-3 involves the thiol group of Cys-163 and the

hydrogen bonding.[19] In vitro, caspase-3 has been found to prefer the peptide sequence DEVDG (Asp-Glu-Val-Asp-Gly) with cleavage occurring on the carboxy side of the second aspartic acid residue (between D and G).[11][19][20] Caspase-3 is active over a broad pH range that is slightly higher (more basic) than many of the other executioner caspases. This broad range indicates that caspase-3 will be fully active under normal and apoptotic cell conditions.[21]

active site alt text
Cys-285 (yellow) and His-237 (green and dark blue) in the active site of caspase-3, p12 subunit in pink and p17 subunit in light blue; image generated in Pymol from 1rhr.pdb

Activation

Caspase-3 is activated in the apoptotic cell both by extrinsic (death ligand) and intrinsic (mitochondrial) pathways.

Apaf-1), and ATP to process procaspase-3.[20][26][27] These molecules are sufficient to activate caspase-3 in vitro, but other regulatory proteins are necessary in vivo.[27]
Mangosteen (Garcinia mangostana) extract has been shown to inhibit the activation of caspase 3 in B-amyloid treated human neuronal cells.[28]

Inhibition

One means of caspase inhibition is through the IAP (inhibitor of apoptosis) protein family, which includes c-IAP1, c-IAP2, XIAP, and ML-IAP.[19] XIAP binds and inhibits initiator caspase-9, which is directly involved in the activation of executioner caspase-3.[27] During the caspase cascade, however, caspase-3 functions to inhibit XIAP activity by cleaving caspase-9 at a specific site, preventing XIAP from being able to bind to inhibit caspase-9 activity.[29]

Interactions

Caspase 3 has been shown to

interact
with:

Biological function

Caspase-3 has been found to be necessary for normal brain development as well as its typical role in apoptosis, where it is responsible for chromatin condensation and DNA fragmentation.[20] Elevated levels of a fragment of Caspase-3, p17, in the bloodstream is a sign of a recent myocardial infarction.[51] It is now being shown that caspase-3 may play a role in embryonic and hematopoietic stem cell differentiation.[52]

See also

References

  1. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031628Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "OrthoMaM phylogenetic marker: CASP3 coding sequence". Archived from the original on 2016-03-03. Retrieved 2009-12-20.
  5. S2CID 5345060
    .
  6. .
  7. ^ "Entrez Gene: CASP3 caspase 3, apoptosis-related cysteine peptidase".
  8. PMID 19077196
    .
  9. .
  10. ^ .
  11. ^ .
  12. ^ .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. ^ .
  20. ^ .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. ^ .
  27. ^ .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .
  52. .

Further reading

External links