Glycerol-3-phosphate dehydrogenase

Source: Wikipedia, the free encyclopedia.
Glycerol-3-phosphate dehydrogenase (NAD+)
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
Glycerol-3-phosphate dehydrogenase (quinone)
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins
NAD-dependent glycerol-3-phosphate dehydrogenase N-terminus
SCOP2
1m66 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
NAD-dependent glycerol-3-phosphate dehydrogenase C-terminus
SCOP2
1m66 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate (a.k.a. glycerone phosphate, outdated) to sn-glycerol 3-phosphate.[2]

Glycerol-3-phosphate dehydrogenase serves as a major link between

mitochondria
.

Older terms for glycerol-3-phosphate dehydrogenase include alpha glycerol-3-phosphate dehydrogenase (alphaGPDH) and glycerolphosphate dehydrogenase (GPDH). However, glycerol-3-phosphate dehydrogenase is not the same as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), whose substrate is an aldehyde not an alcohol.

Metabolic function

GPDH plays a major role in lipid

redox potential across the inner mitochondrial membrane.[3]

NADH dehydrogenases. (I) mitochondrial G3P dehydrogenase. Electrons of these three dehydrogenases enter the respiratory chain at the level of the quinol pool (Q). (J) internal mitochondrial NADH dehydrogenase. (K) ATP synthase. (L) generalized scheme of NADH shuttle. (M) formate oxidation by formate dehydrogenase.[4]

Reaction

The

NAD+, these cannot be freely exchanged between the cytosol and mitochondrial matrix.[4]

One way to shuttle this reducing equivalent across the membrane is through the

Glycerol-3-phosphate shuttle
, which employs the two forms of GPDH:

The reactions catalyzed by cytosolic (soluble) and mitochondrial GPDH are as follows:

Coupled reactions catalyzed by the cytosolic (GPDH-C) and mitochondrial (GPDH-M) forms of glycerol 3-phosphate dehydrogenase.[7] GPDH-C and GPDH-M use NADH and quinol (QH) as an electron donors respectively. GPDH-M in addition uses FAD as a co-factor.


Variants

There are two forms of GPDH:

Enzyme Protein Gene
EC number Name Donor / Acceptor Name Subcellular location Abbreviation Name Symbol
1.1.1.8 glycerol-3-phosphate dehydrogenase NADH / NAD+ Glycerol-3-phosphate dehydrogenase [NAD+] cytoplasmic GPDH-C glycerol-3-phosphate dehydrogenase 1 (soluble) GPD1
1.1.5.3 glycerol-3-phosphate dehydrogenase quinol / quinone Glycerol-3-phosphate dehydrogenase mitochondrial GPDH-M glycerol-3-phosphate dehydrogenase 2 (mitochondrial) GPD2

The following human genes encode proteins with GPDH enzymatic activity:

glycerol-3-phosphate dehydrogenase 1 (soluble)
Identifiers
SymbolGPD1
Chr. 12 q12-q13
Search for
StructuresSwiss-model
DomainsInterPro
glycerol-3-phosphate dehydrogenase 2 (mitochondrial)
Identifiers
SymbolGPD2
Chr. 2 q24.1
Search for
StructuresSwiss-model
DomainsInterPro

GPD1

Cytosolic Glycerol-3-phosphate dehydrogenase (GPD1), is an

NAD+
in the following reaction:

GPD1 Reaction Mechanism

As a result,

NAD+
is regenerated for further metabolic activity.

GPD1 consists of two subunits,

NAD+
though the following interaction:

Figure 4. The putative active site. The phosphate group of DHAP is half-encircled by the side-chain of Arg269, and interacts with Arg269 and Gly268 directly by hydrogen bonds (not shown). The conserved residues Lys204, Asn205, Asp260 and Thr264 form a stable hydrogen bonding network. The other hydrogen bonding network includes residues Lys120 and Asp260, as well as an ordered water molecule (with a B-factor of 16.4 Å2), which hydrogen bonds to Gly149 and Asn151 (not shown). In these two electrostatic networks, only the ε-NH3+ group of Lys204 is the nearest to the C2 atom of DHAP (3.4 Å).[1]

GPD2

Mitochondrial glycerol-3-phosphate dehydrogenase (GPD2), catalyzes the irreversible oxidation of

glycerol-3-phosphate to dihydroxyacetone phosphate and concomitantly transfers two electrons from FAD to the electron transport chain. GPD2 consists of 4 identical subunits.[10]

GPD2 Reaction Mechanism

Response to environmental stresses

Glycerol-3-phosphate shuttle

The cytosolic together with the mitochondrial glycerol-3-phosphate dehydrogenase work in concert. Oxidation of cytoplasmic

outer mitochondrial membrane it can then be oxidised by a separate isoform of glycerol-3-phosphate dehydrogenase that uses quinone as an oxidant and FAD as a co-factor. As a result, there is a net loss in energy, comparable to one molecule of ATP.[7]

The combined action of these enzymes maintains the

NADH
ratio that allows for continuous operation of metabolism.

Role in disease

The fundamental role of GPDH in maintaining the

NADH potential, as well as its role in lipid metabolism, makes GPDH a factor in lipid imbalance diseases, such as obesity
.

Pharmacological target

The mitochondrial isoform of G3P dehydrogenase is thought to be inhibited by metformin, a first line drug for type 2 diabetes. [14]

Biological Research

Sarcophaga barbata was used to study the oxidation of L-3-glycerophosphate in mitochondria. It is found that the L-3-glycerophosphate does not enter the mitochondrial matrix, unlike pyruvate. This helps locate the L-3-glycerophosphate-flavoprotein oxidoreductase, which is on the inner membrane of the mitochondria.

Structure

Glycerol-3-phosphate dehydrogenase consists of two

N-terminal domain is an NAD-binding domain, and the C-terminus acts as a substrate-binding domain.[15] However, dimer and tetramer interface residues are involved in GAPDH-RNA binding, as GAPDH can exhibit several moonlighting activities, including the modulation of RNA binding and/or stability.[16]

See also

References

Further reading

External links

This article incorporates text from the public domain Pfam and InterPro: IPR011128
This article incorporates text from the public domain Pfam and InterPro: IPR006109