Plant stem

Source: Wikipedia, the free encyclopedia.
Stem showing internode and nodes plus leaf petioles
adventitious roots
from the nodes.
Xylem and Phloem

A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, photosynthesis takes place here, stores nutrients, and produces new living tissue.[1] The stem can also be called halm or haulm or culms.

The stem is normally divided into nodes and internodes:

  • The nodes are the points of attachment for leaves and can hold one or more leaves. There are sometimes axillary
    tendrils
    from nodes.
  • The internodes distance one node from another.

The term "shoots" is often confused with "stems"; "shoots" generally refers to new fresh plant growth, including both stems and other structures like leaves or flowers.

In most plants, stems are located above the soil surface, but some plants have underground stems.

Stems have several main functions:[2]

  • Support for and the elevation of leaves, flowers, and fruits. The stems keep the leaves in the light and provide a place for the plant to keep its flowers and fruits.
  • Transport of fluids between the roots and the shoots in the xylem and phloem.
  • Storage of nutrients.
  • Production of new living tissue. The normal lifespan of plant cells is one to three years. Stems have cells called meristems that annually generate new living tissue.
  • Photosynthesis.

Stems have two pipe-like tissues called

transpiration pull, capillary action, and root pressure. The phloem tissue arises from the cell facing outside and consists of sieve tubes and their companion cells. The function of phloem tissue is to distribute food from photosynthetic tissue to other tissues. The two tissues are separated by cambium
, a tissue that divides to form xylem or phloem cells.

Specialized terms

Stems are often specialized for storage, asexual reproduction, protection, or photosynthesis, including the following:

Climbing stem of Senecio angulatus.
Decumbent stem in Cucurbita maxima.
  • Decumbent: A stem that lies flat on the ground and turns upwards at the ends.
  • Fruticose: Stems that grow shrublike with woody like habit.
  • Herbaceous
    : Non woody stems which die at the end of the growing season.
  • Internode: An interval between two successive nodes. It possesses the ability to elongate, either from its base or from its extremity depending on the species.
  • Node: A point of attachment of a leaf or a twig on the stem in seed plants. A node is a very small growth zone.
  • infrutescence
    .
  • Peduncle: A stem that supports an inflorescence or a solitary flower.
  • Prickle: A sharpened extension of the stem's outer layers, e.g. roses.
  • Pseudostem: A false stem made of the rolled bases of leaves, which may be 2 to 3 m (6 ft 7 in to 9 ft 10 in) tall, as in banana.
  • Rhizome: A horizontal underground stem that functions mainly in reproduction but also in storage, e.g. most ferns, iris.
  • garden strawberry, Chlorophytum comosum
    .
  • .
  • Stolon: A horizontal stem that produces rooted plantlets at its nodes and ends, forming near the surface of the ground.
  • Thorn: A modified stem
    with a sharpened point.
  • Tuber: A swollen, underground storage stem adapted for storage and reproduction, e.g. potato.
  • Woody: Hard textured stems with secondary xylem.
  • Sapwood: A woody stem, the layer of secondary phloem that surrounds the heartwood; usually active in fluid transport

Stem structure

Flax stem cross-section, showing locations of underlying tissues. Ep = epidermis; C = cortex; BF = bast fibres; P = phloem; X = xylem; Pi = pith

Stem usually consist of three tissues: dermal tissue, ground tissue, and vascular tissue.

Dermal tissue covers the outer surface of the stem and usually functions to waterproof, protect, and control gas exchange. The dermal tissue of aquatic plants stems may lack the waterproofing found in aerial stems.

Ground tissue usually consists mainly of parenchyma cells and fills in around the vascular tissue. It sometimes functions in photosynthesis. Most or all ground tissue may be lost in woody stems.

Vascular tissue provides long distance transport and structural support. The arrangement of the vascular tissues varies widely among plant species.

Dicot stems

hypodermis (collenchyma cells) and endodermis (starch containing cells) is present above the pericycle
and vascular bundles.

Woody dicots and many nonwoody dicots have

periderm
, which replaces the epidermis in function. Areas of loosely packed cells in the periderm that function in gas exchange are called lenticels.

Secondary

heartwood and is the result of tylosis
. The outer, living wood is termed the sapwood.

Monocot stems

Stems of two Roystonea regia palms showing characteristic bulge, leaf scars and fibrous roots, Kolkata, India

Vascular bundles are present throughout the

monocot stem, although concentrated towards the outside. This differs from the dicot stem that has a ring of vascular bundles and often none in the center. The shoot apex in monocot stems is more elongated. Leaf sheathes grow up around it, protecting it. This is true to some extent of almost all monocots. Monocots rarely produce secondary growth and are therefore seldom woody, with palms and bamboo
being notable exceptions. However, many monocot stems increase in diameter via anomalous secondary growth.

Gymnosperm stems

All gymnosperms are woody plants. Their stems are similar in structure to woody dicots except that most gymnosperms produce only tracheids in their xylem, not the vessels found in dicots. Gymnosperm wood also often contains resin ducts. Woody dicots are called hardwoods, e.g. oak, maple and walnut. In contrast, softwoods are gymnosperms, such as pine, spruce and fir.

  • The trunk of this redwood tree is its stem.
    The trunk of this redwood tree is its stem.

Fern stems

Most ferns have rhizomes with no vertical stem. The exception is tree ferns, which have vertical stems that can grow up to about 20 metres. The stem anatomy of ferns is more complicated than that of dicots because fern stems often have one or more leaf gaps in cross section. A leaf gap is where the vascular tissue branches off to a frond. In cross section, the vascular tissue does not form a complete cylinder where a leaf gap occurs. Fern stems may have solenosteles or dictyosteles or variations of them. Many fern stems have phloem tissue on both sides of the xylem in cross-section.

  • Tasmanian tree fern
    Tasmanian tree fern

Relation to xenobiotics

Foreign chemicals such as air pollutants,[4] herbicides and pesticides can damage stem structures.

Economic importance

White and green asparagus – crispy stems are the edible parts of this vegetable

There are thousands of species whose stems have economic uses. Stems provide a few major staple crops such as potato and

Acacia senegal trees. Chicle, the main ingredient in chewing gum
, is obtained from trunks of the chicle tree.

Medicines obtained from stems include quinine from the bark of cinchona trees, camphor distilled from wood of a tree in the same genus that provides cinnamon, and the muscle relaxant curare from the bark of tropical vines.

Wood is used in thousands of ways; it can be used to create

scaffolding. Trunks of palms and tree ferns are often used for building. Stems of reed are an important building material for use in thatching
in some areas.

Bast fibers for textiles and rope are obtained from stems of plants like flax, hemp, jute and ramie. The earliest known paper was obtained from the stems of papyrus
by the ancient Egyptians.

jewelry and may contain preserved animals. Resins from conifer wood are used to produce turpentine and rosin. Tree bark is often used as a mulch and in growing media for container plants. It also can become the natural habitat of lichens
.

Some ornamental plants are grown mainly for their attractive stems, e.g.:

See also

References

  1. .
  2. .
  3. ^ Goebel, K.E.v. (1969) [1905]. Organography of plants, especially of the Archegoniatae and Spermaphyta. New York: Hofner publishing company.
  4. ^ C. Michael Hogan. 2010. "Abiotic factor". Encyclopedia of Earth. Emily Monosson and C. Cleveland, eds. National Council for Science and the Environment Archived 2013-06-08 at the Wayback Machine. Washington, D.C.

Further reading

External links