Timeline of science and engineering in the Muslim world

Source: Wikipedia, the free encyclopedia.

This timeline of science and engineering in the Muslim world covers the time period from the eighth century AD to the introduction of European science to the Muslim world in the nineteenth century. All year dates are given according to the Gregorian calendar except where noted.

Eighth Century

Astronomers and astrologers
Biologists, neuroscientists, and psychologists
Mathematics
  • 780 – 850:
    al-Khwarizmi Developed the "calculus of resolution and juxtaposition" (hisab al-jabr w'al-muqabala), more briefly referred to as al-jabr, or algebra
    .

Ninth Century

The Conica of Apollonius of Perga, "the great geometer", translated into Arabic in the ninth century
Chemistry
  • 801 – 873: al-Kindi writes on the distillation of wine as that of rose water and gives 107 recipes for perfumes, in his book Kitab Kimia al-'otoor wa al-tas`eedat (Book of the Chemistry of Perfumes and Distillations.)[citation needed]
  • 865 – 925:
    glycerine
    . Gave descriptions of equipment processes and methods in his book Kitab al-Asrar (Book of Secrets).
Mathematics
Miscellaneous

Tenth Century

By this century, three

Indian numeral system, which was used with various sets of symbols. Its arithmetic at first required the use of a dust board (a sort of handheld blackboard
) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded."

Chemistry
Mathematics

Eleventh Century

Mathematics

Twelfth Century

Cartography
Mathematics
  • 1130–1180: Al-Samawal. An important member of al-Karaji's school of algebra. Gave this definition of algebra: "[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known."[1]
  • 1135: Sharaf al-Din al-Tusi. Follows al-Khayyam's application of algebra of geometry, rather than follow the general development that came through al-Karaji's school of algebra. Wrote a treatise on cubic equations which [2][page needed] describes thus: "[the treatise] represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." (quoted in [1] ).

Thirteenth Century

Chemistry
Mathematics
Astronomy
Manuscript of al-Mulakhkhas fi al-Hay’ah in the Khalili Collection of Islamic Art
  • Jaghmini completed the al-Mulakhkhas fi al-Hay’ah ("Epitome of plain theoretical astronomy"), an astronomical textbook which spawned many commentaries and whose educational use lasted until the 18th century.[4]
Miscellaneous
  • Mechanical engineering: Ismail al-Jazari described 100 mechanical devices, some 80 of which are trick vessels of various kinds, along with instructions on how to construct them.
  • Medicine; Scientific method:
    Ibn Al-Nafis (1213–1288) Damascene physician and anatomist. Discovered the lesser circulatory system (the cycle involving the ventricles of the heart and the lungs) and described the mechanism of breathing and its relation to the blood and how it nourishes on air in the lungs. Followed a "constructivist" path of the smaller circulatory system: "blood is purified in the lungs for the continuance of life and providing the body with the ability to work". During his time, the common view was that blood originates in the liver then travels to the right ventricle, then on to the organs of the body; another contemporary view was that blood is filtered through the diaphragm where it mixes with the air coming from the lungs. Ibn al-Nafis discredited all these views including ones by Galen and Avicenna (ibn Sina). At least an illustration of his manuscript is still extant. William Harvey explained the circulatory system without reference to ibn al-Nafis in 1628. Ibn al-Nafis extolled the study of comparative anatomy in his "Explaining the dissection of [Avicenna's] Al-Qanoon" which includes a preface, and citations of sources. Emphasized the rigours of verification by measurement, observation and experiment. Subjected conventional wisdom of his time to a critical review and verified it with experiment and observation, discarding errors.[citation needed
    ]

Fourteenth Century

Astronomy
Mathematics

Fifteenth Century

Mathematics

Seventeenth century

Mathematics

Modern science

Muslim scientists made significant contributions to modern science. These include the development of the electroweak unification theory by Abdus Salam, development of femtochemistry by Ahmed Zewail, invention of quantum dots by Moungi Bawendi, and development of fuzzy set theory by Lotfi A. Zadeh. Other major contributions include introduction of Kardar–Parisi–Zhang equation by Mehran Kardar, the development of Circuit topology by Alireza Mashaghi, and the first description of Behçet's disease by Hulusi Behçet.

Contributions of muslim scientists have been recognised by 4 Nobel Prizes and 2 fields medals. Abdus Salam was the first muslim to win a Nobel Prize in science and Maryam Mirzakhani was the first muslim to win a fields medal in mathematics.

See also

References

Citations

  1. ^ a b c d e f g Arabic Mathematics at the University of St-Andrews, Scotland
  2. ^ Rashed, R (1994). The development of Arabic mathematics: between arithmetic and algebra. London, England.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ a b "Various AP Lists and Statistics". Archived from the original on 28 July 2012. Retrieved 9 November 2006.
  4. )
  5. ^ "Celestial globe". National Museums Scotland. Retrieved 15 October 2020.
  6. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 67.
  7. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 69.
  8. ^ Savage-Smith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 43.

Sources

External links